Wu Liang, Li Yu, Fu Zhengyi, Su Bao-Lian
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
Natl Sci Rev. 2020 Aug 24;7(11):1667-1701. doi: 10.1093/nsr/nwaa183. eCollection 2020 Nov.
To address the growing energy demands of sustainable development, it is crucial to develop new materials that can improve the efficiency of energy storage systems. Hierarchically structured porous materials have shown their great potential for energy storage applications owing to their large accessible space, high surface area, low density, excellent accommodation capability with volume and thermal variation, variable chemical compositions and well controlled and interconnected hierarchical porosity at different length scales. Porous hierarchy benefits electron and ion transport, and mass diffusion and exchange. The electrochemical behavior of hierarchically structured porous materials varies with different pore parameters. Understanding their relationship can lead to the defined and accurate design of highly efficient hierarchically structured porous materials to enhance further their energy storage performance. In this review, we take the characteristic parameters of the hierarchical pores as the survey object to summarize the recent progress on hierarchically structured porous materials for energy storage. This is the first of this kind exclusively to survey the performance of hierarchically structured porous materials from different porous characteristics. For those who are not familiar with hierarchically structured porous materials, a series of very significant synthesis strategies of hierarchically structured porous materials are firstly and briefly reviewed. This will be beneficial for those who want to quickly obtain useful reference information about the synthesis strategies of new hierarchically structured porous materials to improve their performance in energy storage. The effect of different organizational, structural and geometric parameters of porous hierarchy on their electrochemical behavior is then deeply discussed. We outline the existing problems and development challenges of hierarchically structured porous materials that need to be addressed in renewable energy applications. We hope that this review can stimulate strong intuition into the design and application of new hierarchically structured porous materials in energy storage and other fields.
为满足可持续发展对能源日益增长的需求,开发能够提高能量存储系统效率的新材料至关重要。具有分级结构的多孔材料因其可及空间大、比表面积高、密度低、对体积和热变化具有出色的适应性、化学成分可变以及在不同长度尺度上具有良好控制且相互连通的分级孔隙率,在能量存储应用中展现出巨大潜力。多孔分级结构有利于电子和离子传输以及质量扩散和交换。具有分级结构的多孔材料的电化学行为随不同的孔隙参数而变化。了解它们之间的关系有助于明确而准确地设计高效的具有分级结构的多孔材料,以进一步提高其能量存储性能。在本综述中,我们以分级孔隙的特征参数为研究对象,总结了具有分级结构的多孔材料在能量存储方面的最新进展。这是首次专门从不同多孔特性的角度来综述具有分级结构的多孔材料的性能。对于不熟悉具有分级结构的多孔材料的人,首先简要回顾了一系列非常重要的具有分级结构的多孔材料的合成策略。这将有助于那些希望快速获取有关新型具有分级结构的多孔材料合成策略的有用参考信息以提高其能量存储性能的人。然后深入讨论了多孔分级结构的不同组织、结构和几何参数对其电化学行为的影响。我们概述了在可再生能源应用中需要解决的具有分级结构的多孔材料存在的问题和发展挑战。我们希望本综述能够激发人们对新型具有分级结构的多孔材料在能量存储及其他领域的设计和应用产生强烈的直观认识。