Debefve Louise M, Pollock Christopher J
Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, New York 14853, USA.
Phys Chem Chem Phys. 2021 Nov 10;23(43):24780-24788. doi: 10.1039/d1cp01851e.
Platinum is used extensively as a catalyst for a wide variety of chemical reactions, though its scarcity and price present limitations to expansions of its use. To understand the origin of platinum's versatility-with the goals of both improving the efficiency of existing catalysts and mimicking its reactivity with more abundant metals-the mechanisms of platinum-catalyzed chemical reactions must be understood structural and spectroscopic characterization of these catalysts under conditions. Such data, typically consisting of complex mixtures of species, often prove challenging to interpret, inviting the aid of chemical theory. DFT calculations in particular have proven successful at predicting structural and spectroscopic parameters of transition metal species, though a thorough investigation of how these methods perform for platinum-based complexes has yet to be undertaken. Herein, we evaluated the performance of geometry optimization for five commonly used functionals (BP86, PBE, B3LYP, PBE0, and TPSSh) in combination with various ligand basis sets, relativistic approximations, and solvation and dispersion models. We applied these DFT methods to a training set of 14 platinum-containing complexes with varying sizes, oxidation states, and number and type of ligands and determined that the best-performing method was the PBE0 functional together with the def2-TZVP basis set for the ligand atoms, the ZORA relativistic approximation, and solvation and dispersion corrections. The ability of this DFT methodology to accurately predict metrical parameters was confirmed using two case studies, most notably by comparing the DFT optimized geometry of a previously uncharacterized complex to newly collected EXAFS data, which showed excellent agreement.
铂被广泛用作各种化学反应的催化剂,但其稀缺性和价格限制了其使用范围的扩大。为了理解铂的多功能性的起源——以提高现有催化剂的效率和模拟其与更丰富金属的反应活性为目标——必须了解铂催化化学反应的机制,即在相关条件下对这些催化剂进行结构和光谱表征。这些数据通常由复杂的物种混合物组成,往往难以解释,因此需要化学理论的帮助。特别是密度泛函理论(DFT)计算已被证明在预测过渡金属物种的结构和光谱参数方面很成功,不过尚未对这些方法在铂基配合物中的表现进行全面研究。在此,我们评估了五种常用泛函(BP86、PBE、B3LYP、PBE0和TPSSh)与各种配体基组、相对论近似以及溶剂化和色散模型相结合时的几何优化性能。我们将这些DFT方法应用于一组包含14种不同大小、氧化态以及配体数量和类型的含铂配合物的训练集,并确定表现最佳的方法是PBE0泛函与用于配体原子的def2-TZVP基组、ZORA相对论近似以及溶剂化和色散校正相结合。通过两个案例研究证实了这种DFT方法准确预测度量参数的能力,最显著的是将一个先前未表征的配合物的DFT优化几何结构与新收集的扩展X射线吸收精细结构(EXAFS)数据进行比较,结果显示出极好的一致性。