Suppr超能文献

人源 ATP13A2(PARK9)转运多胺的结构基础。

Structural basis of polyamine transport by human ATP13A2 (PARK9).

机构信息

Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA.

Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany.

出版信息

Mol Cell. 2021 Nov 18;81(22):4635-4649.e8. doi: 10.1016/j.molcel.2021.08.017. Epub 2021 Oct 28.

Abstract

Polyamines are small, organic polycations that are ubiquitous and essential to all forms of life. Currently, how polyamines are transported across membranes is not understood. Recent studies have suggested that ATP13A2 and its close homologs, collectively known as P5B-ATPases, are polyamine transporters at endo-/lysosomes. Loss-of-function mutations of ATP13A2 in humans cause hereditary early-onset Parkinson's disease. To understand the polyamine transport mechanism of ATP13A2, we determined high-resolution cryoelectron microscopy (cryo-EM) structures of human ATP13A2 in five distinct conformational intermediates, which together, represent a near-complete transport cycle of ATP13A2. The structural basis of the polyamine specificity was revealed by an endogenous polyamine molecule bound to a narrow, elongated cavity within the transmembrane domain. The structures show an atypical transport path for a water-soluble substrate, in which polyamines may exit within the cytosolic leaflet of the membrane. Our study provides important mechanistic insights into polyamine transport and a framework to understand the functions and mechanisms of P5B-ATPases.

摘要

多胺是一类小型有机聚阳离子,普遍存在于所有生命形式中,是其必需物质。目前,人们尚不清楚多胺如何穿过细胞膜进行转运。最近的研究表明,ATP13A2 及其密切同源物(统称为 P5B-ATP 酶)是内体/溶酶体中的多胺转运体。ATP13A2 基因的功能丧失性突变会导致人类遗传性早发性帕金森病。为了了解 ATP13A2 的多胺转运机制,我们利用 cryo-EM 技术解析了人类 ATP13A2 在五个不同构象中间态的高分辨率结构,这些结构共同代表了 ATP13A2 近乎完整的转运循环。通过与跨膜结构域内狭窄、细长的腔室结合的内源性多胺分子,揭示了多胺特异性的结构基础。这些结构显示出一种针对水溶性底物的非典型转运途径,其中多胺可能在膜胞质小叶内排出。本研究为多胺转运提供了重要的机制见解,并为理解 P5B-ATP 酶的功能和机制提供了框架。

相似文献

1
Structural basis of polyamine transport by human ATP13A2 (PARK9).
Mol Cell. 2021 Nov 18;81(22):4635-4649.e8. doi: 10.1016/j.molcel.2021.08.017. Epub 2021 Oct 28.
2
Structural mechanisms for gating and ion selectivity of the human polyamine transporter ATP13A2.
Mol Cell. 2021 Nov 18;81(22):4650-4662.e4. doi: 10.1016/j.molcel.2021.10.002. Epub 2021 Oct 28.
3
Cryo-EM reveals mechanistic insights into lipid-facilitated polyamine export by human ATP13A2.
Mol Cell. 2021 Dec 2;81(23):4799-4809.e5. doi: 10.1016/j.molcel.2021.11.001. Epub 2021 Nov 18.
4
Structure and transport mechanism of P5B-ATPases.
Nat Commun. 2021 Jun 25;12(1):3973. doi: 10.1038/s41467-021-24148-y.
5
Conformational cycle of human polyamine transporter ATP13A2.
Nat Commun. 2023 Apr 8;14(1):1978. doi: 10.1038/s41467-023-37741-0.
6
Cryo-EM structures and transport mechanism of human P5B type ATPase ATP13A2.
Cell Discov. 2021 Nov 2;7(1):106. doi: 10.1038/s41421-021-00334-6.
7
ATP13A2-mediated endo-lysosomal polyamine export counters mitochondrial oxidative stress.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31198-31207. doi: 10.1073/pnas.1922342117. Epub 2020 Nov 23.
8
ATP13A2 deficiency disrupts lysosomal polyamine export.
Nature. 2020 Feb;578(7795):419-424. doi: 10.1038/s41586-020-1968-7. Epub 2020 Jan 29.
9
P5-ATPases: Structure, substrate specificities, and transport mechanisms.
Curr Opin Struct Biol. 2023 Apr;79:102531. doi: 10.1016/j.sbi.2023.102531. Epub 2023 Jan 30.
10
Parkinson's disease-associated human P5B-ATPase ATP13A2 increases spermidine uptake.
Biochem J. 2013 Feb 15;450(1):47-53. doi: 10.1042/BJ20120739.

引用本文的文献

1
Structure and mechanism of human vesicular polyamine transporter.
Nat Commun. 2025 May 3;16(1):4142. doi: 10.1038/s41467-025-59549-w.
2
Substrates, regulation, cellular functions, and disease associations of P4-ATPases.
Commun Biol. 2025 Jan 28;8(1):135. doi: 10.1038/s42003-025-07549-3.
3
Metal Ion Signaling in Biomedicine.
Chem Rev. 2025 Jan 22;125(2):660-744. doi: 10.1021/acs.chemrev.4c00577. Epub 2025 Jan 2.
4
Polyamines mediate cellular energetics and lipid metabolism through mitochondrial respiration to facilitate virus replication.
PLoS Pathog. 2024 Nov 18;20(11):e1012711. doi: 10.1371/journal.ppat.1012711. eCollection 2024 Nov.
5
The structure and function of P5A-ATPases.
Nat Commun. 2024 Nov 6;15(1):9605. doi: 10.1038/s41467-024-53757-6.
6
Structural insights into polyamine spermidine uptake by the ABC transporter PotD-PotABC.
Sci Adv. 2024 Sep 20;10(38):eado8107. doi: 10.1126/sciadv.ado8107.
10
The role of polyamine metabolism in cellular function and physiology.
Am J Physiol Cell Physiol. 2024 Aug 1;327(2):C341-C356. doi: 10.1152/ajpcell.00074.2024. Epub 2024 Jun 17.

本文引用的文献

1
Transport mechanism of P4 ATPase phosphatidylcholine flippases.
Elife. 2020 Dec 15;9:e62163. doi: 10.7554/eLife.62163.
2
ATP13A3 is a major component of the enigmatic mammalian polyamine transport system.
J Biol Chem. 2021 Jan-Jun;296:100182. doi: 10.1074/jbc.RA120.013908. Epub 2020 Dec 17.
3
ATP13A2-mediated endo-lysosomal polyamine export counters mitochondrial oxidative stress.
Proc Natl Acad Sci U S A. 2020 Dec 8;117(49):31198-31207. doi: 10.1073/pnas.1922342117. Epub 2020 Nov 23.
5
The transport mechanism of P4 ATPase lipid flippases.
Biochem J. 2020 Oct 16;477(19):3769-3790. doi: 10.1042/BCJ20200249.
6
Transport Cycle of Plasma Membrane Flippase ATP11C by Cryo-EM.
Cell Rep. 2020 Sep 29;32(13):108208. doi: 10.1016/j.celrep.2020.108208.
7
The endoplasmic reticulum P5A-ATPase is a transmembrane helix dislocase.
Science. 2020 Sep 25;369(6511). doi: 10.1126/science.abc5809.
8
CATP-8/P5A ATPase Regulates ER Processing of the DMA-1 Receptor for Dendritic Branching.
Cell Rep. 2020 Sep 8;32(10):108101. doi: 10.1016/j.celrep.2020.108101.
9
Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape.
Nat Chem Biol. 2020 Jun;16(6):644-652. doi: 10.1038/s41589-020-0529-6. Epub 2020 May 4.
10
ATP13A2 deficiency disrupts lysosomal polyamine export.
Nature. 2020 Feb;578(7795):419-424. doi: 10.1038/s41586-020-1968-7. Epub 2020 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验