Suppr超能文献

去分化改变了体外培养和扩增过程中软骨细胞的核力学。

Dedifferentiation alters chondrocyte nuclear mechanics during in vitro culture and expansion.

机构信息

Department of Mechanical Engineering, Colorado State University, Fort Collins, CO; School of Biomedical Engineering, Colorado State University, Fort Collins, CO; Translational Medicine Institute, Colorado State University, Fort Collins, CO.

Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO.

出版信息

Biophys J. 2022 Jan 4;121(1):131-141. doi: 10.1016/j.bpj.2021.11.018. Epub 2021 Nov 17.

Abstract

The biophysical features of a cell can provide global insights into diverse molecular changes, especially in processes like the dedifferentiation of chondrocytes. Key biophysical markers of chondrocyte dedifferentiation include flattened cellular morphology and increased stress-fiber formation. During cartilage regeneration procedures, dedifferentiation of chondrocytes during in vitro expansion presents a critical limitation to the successful repair of cartilage tissue. Our study investigates how biophysical changes of chondrocytes during dedifferentiation influence the nuclear mechanics and gene expression of structural proteins located at the nuclear envelope. Through an experimental model of cell stretching and a detailed spatial intranuclear strain quantification, we identified that strain is amplified and the distribution of strain within the chromatin is altered under tensile loading in the dedifferentiated state. Further, using a confocal microscopy image-based finite element model and simulation of cell stretching, we found that the cell shape is the primary determinant of the strain amplification inside the chondrocyte nucleus in the dedifferentiated state. Additionally, we found that nuclear envelope proteins have lower gene expression in the dedifferentiated state. This study highlights the role of cell shape in nuclear mechanics and lays the groundwork to design biophysical strategies for the maintenance and enhancement of the chondrocyte phenotype during cell expansion with a goal of successful cartilage tissue engineering.

摘要

细胞的生物物理特征可以提供对各种分子变化的全局见解,尤其是在软骨细胞去分化等过程中。软骨细胞去分化的关键生物物理标志物包括细胞形态的扁平化和应力纤维的形成增加。在软骨再生过程中,软骨细胞在体外扩增过程中的去分化是软骨组织成功修复的关键限制因素。我们的研究调查了软骨细胞在去分化过程中的生物物理变化如何影响核膜上结构蛋白的核力学和基因表达。通过细胞拉伸的实验模型和详细的核内空间应变定量,我们确定在拉伸状态下,应变被放大,并且在染色质内的应变分布发生改变。此外,通过基于共聚焦显微镜图像的有限元模型和细胞拉伸模拟,我们发现细胞形状是去分化状态下软骨细胞核内应变放大的主要决定因素。此外,我们发现核膜蛋白在去分化状态下的基因表达降低。这项研究强调了细胞形状在核力学中的作用,并为设计生物物理策略奠定了基础,以在细胞扩增过程中维持和增强软骨细胞表型,从而成功进行软骨组织工程。

相似文献

1
Dedifferentiation alters chondrocyte nuclear mechanics during in vitro culture and expansion.
Biophys J. 2022 Jan 4;121(1):131-141. doi: 10.1016/j.bpj.2021.11.018. Epub 2021 Nov 17.
2
An Innovative Laboratory Procedure to Expand Chondrocytes with Reduced Dedifferentiation.
Cartilage. 2018 Apr;9(2):202-211. doi: 10.1177/1947603517746724. Epub 2017 Dec 22.
3
Priming chondrocytes during expansion alters cell behavior and improves matrix production in 3D culture.
Osteoarthritis Cartilage. 2024 May;32(5):548-560. doi: 10.1016/j.joca.2023.12.006. Epub 2023 Dec 30.
5
Effects of passage number and post-expansion aggregate culture on tissue engineered, self-assembled neocartilage.
Acta Biomater. 2016 Oct 1;43:150-159. doi: 10.1016/j.actbio.2016.07.044. Epub 2016 Jul 28.
8
Human Cartilage-Derived Progenitor Cells From Committed Chondrocytes for Efficient Cartilage Repair and Regeneration.
Stem Cells Transl Med. 2016 Jun;5(6):733-44. doi: 10.5966/sctm.2015-0192. Epub 2016 Apr 29.

引用本文的文献

1
Tracking chondrocyte-to-fibroblast transformation via changes in cell electrophysiology.
Sci Rep. 2025 May 7;15(1):15865. doi: 10.1038/s41598-025-98958-1.
2
Decellularized Cell-Secreted Extracellular Matrices as Biomaterials for Tissue Engineering.
Small Sci. 2024 Dec 6;5(2):2400335. doi: 10.1002/smsc.202400335. eCollection 2025 Feb.
3
Mesangiogenic progenitor cells: a mesengenic and vasculogenic branch of hemopoiesis? A story of neglected plasticity.
Front Cell Dev Biol. 2025 Mar 24;13:1513440. doi: 10.3389/fcell.2025.1513440. eCollection 2025.
4
Expansion and Delivery of Human Chondrocytes on Gelatin-Based Cell Carriers.
Gels. 2025 Mar 13;11(3):199. doi: 10.3390/gels11030199.
5
The intersection of aging and estrogen in osteoarthritis.
NPJ Womens Health. 2025;3(1):15. doi: 10.1038/s44294-025-00063-1. Epub 2025 Feb 25.
6
Active matter in the nucleus: Chromatin remodeling drives nuclear force dissipation.
Biophys J. 2025 Feb 4;124(3):471-473. doi: 10.1016/j.bpj.2024.12.026. Epub 2024 Dec 25.
8
Spatiotemporal analysis of multi-scale cell structure in spheroid culture reveals hypertrophic chondrocyte differentiation.
Cell Tissue Res. 2024 Sep;397(3):263-274. doi: 10.1007/s00441-024-03905-7. Epub 2024 Jul 23.
9
A high throughput cell stretch device for investigating mechanobiology .
APL Bioeng. 2024 Jun 26;8(2):026129. doi: 10.1063/5.0206852. eCollection 2024 Jun.
10
LGR5 Modulates Differentiated Phenotypes of Chondrocytes Through PI3K/AKT Signaling Pathway.
Tissue Eng Regen Med. 2024 Jul;21(5):791-807. doi: 10.1007/s13770-024-00645-1. Epub 2024 May 21.

本文引用的文献

1
Image-derived modeling of nucleus strain amplification associated with chromatin heterogeneity.
Biophys J. 2021 Apr 20;120(8):1323-1332. doi: 10.1016/j.bpj.2021.01.040. Epub 2021 Mar 4.
2
Nuclear Stiffness Decreases with Disruption of the Extracellular Matrix in Living Tissues.
Small. 2021 Feb;17(6):e2006699. doi: 10.1002/smll.202006699. Epub 2021 Jan 20.
3
Image-Based Elastography of Heterochromatin and Euchromatin Domains in the Deforming Cell Nucleus.
Small. 2021 Feb;17(5):e2006109. doi: 10.1002/smll.202006109. Epub 2021 Jan 15.
4
The Role of Fibrosis in Osteoarthritis Progression.
Life (Basel). 2020 Dec 23;11(1):3. doi: 10.3390/life11010003.
5
Heterochromatin-Driven Nuclear Softening Protects the Genome against Mechanical Stress-Induced Damage.
Cell. 2020 May 14;181(4):800-817.e22. doi: 10.1016/j.cell.2020.03.052. Epub 2020 Apr 16.
6
Geometric confinement is required for recovery and maintenance of chondrocyte phenotype in alginate.
APL Bioeng. 2017 Oct 9;1(1):016104. doi: 10.1063/1.5006752. eCollection 2017 Dec.
8
Mechanical principles of nuclear shaping and positioning.
J Cell Biol. 2018 Oct 1;217(10):3330-3342. doi: 10.1083/jcb.201804052. Epub 2018 Sep 7.
9
Multiscale and Spatially-Dependent Biomechanics Reveals Differential Strain Transfer Hierarchy in Skeletal Muscle.
ACS Biomater Sci Eng. 2017 Nov 13;3(11):2798-2805. doi: 10.1021/acsbiomaterials.6b00772. Epub 2017 Feb 17.
10
Ten principles of heterochromatin formation and function.
Nat Rev Mol Cell Biol. 2018 Apr;19(4):229-244. doi: 10.1038/nrm.2017.119. Epub 2017 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验