Suppr超能文献

基于进化保守的药物作用、抗农药突变和人类化酵母发现新型血管破坏剂。

Discovery of new vascular disrupting agents based on evolutionarily conserved drug action, pesticide resistance mutations, and humanized yeast.

机构信息

Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.

Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA.

出版信息

Genetics. 2021 Aug 26;219(1). doi: 10.1093/genetics/iyab101.

Abstract

Thiabendazole (TBZ) is an FDA-approved benzimidazole widely used for its antifungal and antihelminthic properties. We showed previously that TBZ is also a potent vascular disrupting agent and inhibits angiogenesis at the tissue level by dissociating vascular endothelial cells in newly formed blood vessels. Here, we uncover TBZ's molecular target and mechanism of action. Using human cell culture, molecular modeling, and humanized yeast, we find that TBZ selectively targets only 1 of 9 human β-tubulin isotypes (TUBB8) to specifically disrupt endothelial cell microtubules. By leveraging epidemiological pesticide resistance data and mining chemical features of commercially used benzimidazoles, we discover that a broader class of benzimidazole compounds, in extensive use for 50 years, also potently disrupt immature blood vessels and inhibit angiogenesis. Thus, besides identifying the molecular mechanism of benzimidazole-mediated vascular disruption, this study presents evidence relevant to the widespread use of these compounds while offering potential new clinical applications.

摘要

噻苯达唑(TBZ)是一种获得美国食品药品监督管理局批准的苯并咪唑类药物,因其具有抗真菌和抗蠕虫特性而被广泛应用。我们之前曾表明,TBZ 也是一种有效的血管破坏剂,通过分离新形成的血管中的血管内皮细胞,在组织水平上抑制血管生成。在这里,我们揭示了 TBZ 的分子靶标和作用机制。我们使用人细胞培养、分子建模和人源化酵母发现,TBZ 选择性地仅靶向 9 种人类β-微管蛋白异构体(TUBB8)之一,以特异性破坏内皮细胞微管。通过利用流行病学农药抗性数据和挖掘商业上使用的苯并咪唑的化学特征,我们发现更广泛的一类苯并咪唑化合物,在过去 50 年中广泛使用,也能强烈破坏未成熟的血管并抑制血管生成。因此,除了确定苯并咪唑介导的血管破坏的分子机制外,这项研究还提供了与这些化合物广泛使用相关的证据,同时为它们提供了新的潜在临床应用。

相似文献

2
Synthesis and biological evaluation of thiabendazole derivatives as anti-angiogenesis and vascular disrupting agents.
Bioorg Med Chem. 2015 Jul 1;23(13):3774-80. doi: 10.1016/j.bmc.2015.03.085. Epub 2015 Apr 8.
4
5
Anti-angiogenic and vascular disrupting effects of C9, a new microtubule-depolymerizing agent.
Br J Pharmacol. 2009 Apr;156(8):1228-38. doi: 10.1111/j.1476-5381.2009.00112.x. Epub 2009 Mar 19.
6
NPI-2358 is a tubulin-depolymerizing agent: in-vitro evidence for activity as a tumor vascular-disrupting agent.
Anticancer Drugs. 2006 Jan;17(1):25-31. doi: 10.1097/01.cad.0000182745.01612.8a.
8
Vascular disrupting activity and the mechanism of action of EHT 6706, a novel anticancer tubulin polymerization inhibitor.
Invest New Drugs. 2013 Apr;31(2):304-19. doi: 10.1007/s10637-012-9858-y. Epub 2012 Aug 10.
9
Differential expression of β-tubulin isotypes in different life stages of Parascaris spp after exposure to thiabendazole.
Mol Biochem Parasitol. 2016 Jan-Feb;205(1-2):22-8. doi: 10.1016/j.molbiopara.2016.02.004. Epub 2016 Feb 12.
10
Deoxypodophyllotoxin exerts both anti-angiogenic and vascular disrupting effects.
Int J Biochem Cell Biol. 2013 Aug;45(8):1710-9. doi: 10.1016/j.biocel.2013.04.030. Epub 2013 May 20.

引用本文的文献

2
Systematic profiling of ale yeast protein dynamics across fermentation and repitching.
G3 (Bethesda). 2024 Mar 6;14(3). doi: 10.1093/g3journal/jkad293.
3
Structural Changes, Biological Consequences, and Repurposing of Colchicine Site Ligands.
Biomolecules. 2023 May 14;13(5):834. doi: 10.3390/biom13050834.
4
Humanized yeast to model human biology, disease and evolution.
Dis Model Mech. 2022 Jun 1;15(6). doi: 10.1242/dmm.049309. Epub 2022 Jun 6.
5
Inner nuclear protein Matrin-3 coordinates cell differentiation by stabilizing chromatin architecture.
Nat Commun. 2021 Oct 29;12(1):6241. doi: 10.1038/s41467-021-26574-4.

本文引用的文献

1
Systematic Humanization of the Yeast Cytoskeleton Discerns Functionally Replaceable from Divergent Human Genes.
Genetics. 2020 Aug;215(4):1153-1169. doi: 10.1534/genetics.120.303378. Epub 2020 Jun 10.
2
Humanization of yeast genes with multiple human orthologs reveals functional divergence between paralogs.
PLoS Biol. 2020 May 18;18(5):e3000627. doi: 10.1371/journal.pbio.3000627. eCollection 2020 May.
3
Integrated Transcriptomic and Proteomic Analysis of Primary Human Umbilical Vein Endothelial Cells.
Proteomics. 2019 Aug;19(15):e1800315. doi: 10.1002/pmic.201800315. Epub 2019 Jun 26.
5
First Report of Resistance to Benomyl Fungicide in Sclerotinia sclerotiorum.
Plant Dis. 2001 Nov;85(11):1206. doi: 10.1094/PDIS.2001.85.11.1206C.
7
UniProt: a worldwide hub of protein knowledge.
Nucleic Acids Res. 2019 Jan 8;47(D1):D506-D515. doi: 10.1093/nar/gky1049.
8
Extreme allelic heterogeneity at a Caenorhabditis elegans beta-tubulin locus explains natural resistance to benzimidazoles.
PLoS Pathog. 2018 Oct 29;14(10):e1007226. doi: 10.1371/journal.ppat.1007226. eCollection 2018 Oct.
9
Exploring benzimidazole resistance in Haemonchus contortus by next generation sequencing and droplet digital PCR.
Int J Parasitol Drugs Drug Resist. 2018 Dec;8(3):411-419. doi: 10.1016/j.ijpddr.2018.09.003. Epub 2018 Sep 19.
10
Single-step Precision Genome Editing in Yeast Using CRISPR-Cas9.
Bio Protoc. 2018 Mar 20;8(6). doi: 10.21769/BioProtoc.2765.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验