Department of Medical Imaging, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 704, No. 138 Sheng-Li Road, Tainan, Taiwan.
Clinical Innovation and Research Center, National Cheng Kung University Hospital, Tainan, Taiwan.
Eur Radiol. 2022 Apr;32(4):2277-2285. doi: 10.1007/s00330-021-08370-2. Epub 2021 Dec 2.
This study aimed to evaluate the feasibility of automatic Stanford classification of classic aortic dissection (AD) using a 2-step hierarchical neural network.
Between 2015 and 2019, 130 arterial phase series (57 type A, 43 type B, and 30 negative cases) in aortic CTA were collected for the training and validation. A 2-step hierarchical model was built including the first step detecting AD and the second step predicting the probability (0-1) of Stanford types. The model's performance was evaluated with an off-line prospective test in 2020. The sensitivity and specificity for Stanford type A, type B, and no AD (Sens and Spec , respectively) and Cohen's kappa were reported.
Of 298 cases (22 with type A, 29 with type B, and 247 without AD) in the off-line prospective test, the Sens , Sens , and Sens were 95.45% (95% confidence interval [CI], 77.16-99.88%), 79.31% (95% CI, 60.28-92.01%), and 93.52% (95% CI, 89.69-96.25%), respectively. The Spec , Spec , and Spec were 98.55% (95% CI, 96.33-99.60%), 94.05% (95% CI, 90.52-96.56%), and 94.12% (95% CI, 83.76-98.77%), respectively. The classification rate achieved 92.28% (95% CI, 88.64-95.04%). The Cohen's kappa was 0.766 (95% CI, 0.68-0.85; p < 0.001).
Stanford classification of classic AD can be determined by a 2-step hierarchical neural network with high sensitivity and specificity of type A and high specificity in type B and no AD.
• The Stanford classification for aortic dissection is widely adopted and divides it into Stanford type A and type B based on the ascending thoracic aorta dissected or not. • The 2-step hierarchical neural network for Stanford classification of classic aortic dissection achieved high sensitivity (95.45%) and specificity (98.55%) of type A and high specificity in type B and no aortic dissection (94.05% and 94.12%, respectively) in 298 test cases. • The 2-step hierarchical neural network demonstrated moderate agreement (Cohen's kappa: 0.766, p < 0.001) with cardiovascular radiologists in detection and Stanford classification of classic aortic dissection in 298 test cases.
本研究旨在评估使用两步分层神经网络自动对经典主动脉夹层(AD)进行斯坦福分类的可行性。
在 2015 年至 2019 年期间,共收集了 130 例主动脉 CTA 的动脉期系列(57 例 A 型,43 例 B 型和 30 例阴性病例)用于训练和验证。建立了一个两步分层模型,包括第一步检测 AD,第二步预测斯坦福类型的概率(0-1)。2020 年通过离线前瞻性测试评估模型的性能。报告斯坦福 A 型、B 型和无 AD(Sens 和 Spec,分别)的灵敏度和特异性以及 Cohen's kappa。
在 298 例(22 例 A 型,29 例 B 型和 247 例无 AD)的离线前瞻性测试中,Sens、Spec 和 Spec 分别为 95.45%(95%置信区间[CI],77.16-99.88%)、79.31%(95%CI,60.28-92.01%)和 93.52%(95%CI,89.69-96.25%)。Spec、Spec 和 Spec 分别为 98.55%(95%CI,96.33-99.60%)、94.05%(95%CI,90.52-96.56%)和 94.12%(95%CI,83.76-98.77%)。分类准确率达到 92.28%(95%CI,88.64-95.04%)。Cohen's kappa 为 0.766(95%CI,0.68-0.85;p<0.001)。
两步分层神经网络可用于确定经典 AD 的 Stanford 分类,具有较高的 A 型灵敏度和特异性,B 型和无 AD 的特异性较高。
Stanford 分类法广泛应用于主动脉夹层,根据升主动脉是否夹层将其分为 Stanford 型 A 和型 B。
经典主动脉夹层的两步分层神经网络在 298 例测试病例中实现了较高的 A 型灵敏度(95.45%)和特异性(98.55%),以及 B 型和无主动脉夹层的高特异性(94.05%和 94.12%)。
经典主动脉夹层的两步分层神经网络在 298 例测试病例中与心血管放射科医生在检测和 Stanford 分类方面具有中等一致性(Cohen's kappa:0.766,p<0.001)。