Saba Tanzila, Abunadi Ibrahim, Sadad Tariq, Khan Amjad Rehman, Bahaj Saeed Ali
Artificial Intelligence & Data Analytics Lab, CCIS, Prince Sultan University, Riyadh, 11586, Saudi Arabia.
Department of Computer Science and Software Engineering, International Islamic University, Islamabad, 44000, Pakistan.
Microsc Res Tech. 2022 Apr;85(4):1444-1453. doi: 10.1002/jemt.24008. Epub 2021 Dec 15.
Female accounts for approximately 50% of the total population worldwide and many of them had breast cancer. Computer-aided diagnosis frameworks could reduce the number of needless biopsies and the workload of radiologists. This research aims to detect benign and malignant tumors automatically using breast ultrasound (BUS) images. Accordingly, two pretrained deep convolutional neural network (CNN) models were employed for transfer learning using BUS images like AlexNet and DenseNet201. A total of 697 BUS images containing benign and malignant tumors are preprocessed and performed classification tasks using the transfer learning-based CNN models. The classification accuracy of the benign and malignant tasks is completed and achieved 92.8% accuracy using the DensNet201 model. The results thus achieved compared in state of the art using benchmark data set and concluded proposed model outperforms in accuracy from first stage breast tumor diagnosis. Finally, the proposed model could help radiologists diagnose benign and malignant tumors swiftly by screening suspected patients.
女性约占全球总人口的50%,其中许多人患有乳腺癌。计算机辅助诊断框架可以减少不必要的活检数量和放射科医生的工作量。本研究旨在利用乳腺超声(BUS)图像自动检测良性和恶性肿瘤。因此,使用了两个预训练的深度卷积神经网络(CNN)模型,如AlexNet和DenseNet201,对BUS图像进行迁移学习。总共697张包含良性和恶性肿瘤的BUS图像经过预处理,并使用基于迁移学习的CNN模型执行分类任务。完成了良性和恶性任务的分类准确率,使用DensNet201模型达到了92.8%的准确率。使用基准数据集将由此获得的结果与现有技术进行比较,并得出结论,所提出的模型在第一阶段乳腺肿瘤诊断的准确性方面表现更优。最后,所提出的模型可以通过筛查疑似患者,帮助放射科医生快速诊断良性和恶性肿瘤。