Ala Moein, Ala Mahan
School of Medicine, Tehran University of Medical Sciences (TUMS), 1416753955 Tehran, Iran.
School of Dentistry, Golestan University of Medical Sciences (GUMS), 4814565589 Golestan, Iran.
ACS Pharmacol Transl Sci. 2021 Nov 1;4(6):1747-1770. doi: 10.1021/acsptsci.1c00167. eCollection 2021 Dec 10.
Diabetes is accompanied by several complications. Higher prevalence of cancers, cardiovascular diseases, chronic kidney disease (CKD), obesity, osteoporosis, and neurodegenerative diseases has been reported among patients with diabetes. Metformin is the oldest oral antidiabetic drug and can improve coexisting complications of diabetes. Clinical trials and observational studies uncovered that metformin can remarkably prevent or alleviate cardiovascular diseases, obesity, polycystic ovarian syndrome (PCOS), osteoporosis, cancer, periodontitis, neuronal damage and neurodegenerative diseases, inflammation, inflammatory bowel disease (IBD), tuberculosis, and COVID-19. In addition, metformin has been proposed as an antiaging agent. Numerous mechanisms were shown to be involved in the protective effects of metformin. Metformin activates the LKB1/AMPK pathway to interact with several intracellular signaling pathways and molecular mechanisms. The drug modifies the biologic function of NF-κB, PI3K/AKT/mTOR, SIRT1/PGC-1α, NLRP3, ERK, P38 MAPK, Wnt/β-catenin, Nrf2, JNK, and other major molecules in the intracellular signaling network. It also regulates the expression of noncoding RNAs. Thereby, metformin can regulate metabolism, growth, proliferation, inflammation, tumorigenesis, and senescence. Additionally, metformin modulates immune response, autophagy, mitophagy, endoplasmic reticulum (ER) stress, and apoptosis and exerts epigenetic effects. Furthermore, metformin protects against oxidative stress and genomic instability, preserves telomere length, and prevents stem cell exhaustion. In this review, the protective effects of metformin on each disease will be discussed using the results of recent meta-analyses, clinical trials, and observational studies. Thereafter, it will be meticulously explained how metformin reprograms intracellular signaling pathways and alters molecular and cellular interactions to modify the clinical presentations of several diseases.
糖尿病会伴随多种并发症。据报道,糖尿病患者患癌症、心血管疾病、慢性肾脏病(CKD)、肥胖症、骨质疏松症和神经退行性疾病的患病率更高。二甲双胍是最古老的口服抗糖尿病药物,可改善糖尿病的并存并发症。临床试验和观察性研究发现,二甲双胍可显著预防或减轻心血管疾病、肥胖症、多囊卵巢综合征(PCOS)、骨质疏松症、癌症、牙周炎、神经元损伤和神经退行性疾病、炎症、炎症性肠病(IBD)、结核病和2019冠状病毒病(COVID-19)。此外,二甲双胍已被提议作为一种抗衰老药物。已表明多种机制参与了二甲双胍的保护作用。二甲双胍激活LKB1/AMPK途径,以与多种细胞内信号通路和分子机制相互作用。该药物改变细胞内信号网络中NF-κB、PI3K/AKT/mTOR、SIRT1/PGC-1α、NLRP3、ERK、P38 MAPK、Wnt/β-连环蛋白、Nrf2、JNK和其他主要分子的生物学功能。它还调节非编码RNA的表达。因此,二甲双胍可调节代谢、生长、增殖、炎症、肿瘤发生和衰老。此外,二甲双胍调节免疫反应、自噬、线粒体自噬、内质网(ER)应激和凋亡,并发挥表观遗传效应。此外,二甲双胍可抵御氧化应激和基因组不稳定,保持端粒长度,并防止干细胞耗竭。在本综述中,将使用近期荟萃分析、临床试验和观察性研究的结果讨论二甲双胍对每种疾病的保护作用。此后,将详细解释二甲双胍如何重新编程细胞内信号通路并改变分子和细胞相互作用,以改变几种疾病的临床表现。