Suppr超能文献

基线神经影像学可预测遗忘型轻度认知障碍向痴呆的进展。

Baseline Neuroimaging Predicts Decline to Dementia From Amnestic Mild Cognitive Impairment.

作者信息

Gullett Joseph M, Albizu Alejandro, Fang Ruogu, Loewenstein David A, Duara Ranjan, Rosselli Monica, Armstrong Melissa J, Rundek Tatjana, Hausman Hanna K, Dekosky Steven T, Woods Adam J, Cohen Ronald A

机构信息

Department of Clinical and Health Psychology, University of Florida, Gainesville, FL, United States.

Department of Neuroscience, University of Florida, Gainesville, FL, United States.

出版信息

Front Aging Neurosci. 2021 Dec 7;13:758298. doi: 10.3389/fnagi.2021.758298. eCollection 2021.

Abstract

Prediction of decline to dementia using objective biomarkers in high-risk patients with amnestic mild cognitive impairment (aMCI) has immense utility. Our objective was to use multimodal MRI to (1) determine whether accurate and precise prediction of dementia conversion could be achieved using baseline data alone, and (2) generate a map of the brain regions implicated in longitudinal decline to dementia. Participants meeting criteria for aMCI at baseline ( = 55) were classified at follow-up as remaining stable/improved in their diagnosis ( = 41) or declined to dementia ( = 14). Baseline T1 structural MRI and resting-state fMRI (rsfMRI) were combined and a semi-supervised support vector machine (SVM) which separated stable participants from those who decline at follow-up with maximal margin. Cross-validated model performance metrics and MRI feature weights were calculated to include the strength of each brain voxel in its ability to distinguish the two groups. Total model accuracy for predicting diagnostic change at follow-up was 92.7% using baseline T1 imaging alone, 83.5% using rsfMRI alone, and 94.5% when combining T1 and rsfMRI modalities. Feature weights that survived the < 0.01 threshold for separation of the two groups revealed the strongest margin in the combined structural and functional regions underlying the medial temporal lobes in the limbic system. An MRI-driven SVM model demonstrates accurate and precise prediction of later dementia conversion in aMCI patients. The multi-modal regions driving this prediction were the strongest in the medial temporal regions of the limbic system, consistent with literature on the progression of Alzheimer's disease.

摘要

使用客观生物标志物预测高危遗忘型轻度认知障碍(aMCI)患者向痴呆症的转变具有巨大的实用价值。我们的目标是使用多模态磁共振成像(MRI)来:(1)确定仅使用基线数据是否能够准确且精确地预测痴呆症的转变;(2)生成与纵向发展为痴呆症相关的脑区图谱。基线时符合aMCI标准的参与者(n = 55)在随访时被分类为诊断保持稳定/改善(n = 41)或发展为痴呆症(n = 14)。将基线T1结构MRI和静息态功能MRI(rsfMRI)相结合,并使用半监督支持向量机(SVM)以最大间隔将稳定参与者与随访时病情恶化的参与者区分开来。计算交叉验证的模型性能指标和MRI特征权重,以纳入每个脑体素区分两组的能力强度。仅使用基线T1成像预测随访时诊断变化的总模型准确率为92.7%,仅使用rsfMRI时为83.5%,而将T1和rsfMRI模态相结合时为94.5%。在两组分离的情况下,存活于p < 0.01阈值的特征权重显示,在边缘系统内侧颞叶下方的结构和功能联合区域中,间隔最强。一个由MRI驱动的SVM模型证明了对aMCI患者后期痴呆症转变的准确且精确的预测。驱动这一预测的多模态区域在边缘系统的内侧颞叶区域最强,这与阿尔茨海默病进展的文献一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8137/8691733/a092bca12fa8/fnagi-13-758298-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验