Suppr超能文献

基于图级图注意力网络的 lncRNA-疾病关联预测

gGATLDA: lncRNA-disease association prediction based on graph-level graph attention network.

机构信息

School of Computer Science and Engineering, South China University of Technology, Guangzhou, China.

School of Computer, Electronics and Information, Guangxi University, Nanning, China.

出版信息

BMC Bioinformatics. 2022 Jan 4;23(1):11. doi: 10.1186/s12859-021-04548-z.

Abstract

BACKGROUND

Long non-coding RNAs (lncRNAs) are related to human diseases by regulating gene expression. Identifying lncRNA-disease associations (LDAs) will contribute to diagnose, treatment, and prognosis of diseases. However, the identification of LDAs by the biological experiments is time-consuming, costly and inefficient. Therefore, the development of efficient and high-accuracy computational methods for predicting LDAs is of great significance.

RESULTS

In this paper, we propose a novel computational method (gGATLDA) to predict LDAs based on graph-level graph attention network. Firstly, we extract the enclosing subgraphs of each lncRNA-disease pair. Secondly, we construct the feature vectors by integrating lncRNA similarity and disease similarity as node attributes in subgraphs. Finally, we train a graph neural network (GNN) model by feeding the subgraphs and feature vectors to it, and use the trained GNN model to predict lncRNA-disease potential association scores. The experimental results show that our method can achieve higher area under the receiver operation characteristic curve (AUC), area under the precision recall curve (AUPR), accuracy and F1-Score than the state-of-the-art methods in five fold cross-validation. Case studies show that our method can effectively identify lncRNAs associated with breast cancer, gastric cancer, prostate cancer, and renal cancer.

CONCLUSION

The experimental results indicate that our method is a useful approach for predicting potential LDAs.

摘要

背景

长链非编码 RNA(lncRNA)通过调节基因表达与人类疾病有关。鉴定 lncRNA-疾病关联(LDA)将有助于疾病的诊断、治疗和预后。然而,通过生物学实验鉴定 LDA 既耗时、昂贵又低效。因此,开发高效、高精度的预测 LDA 的计算方法具有重要意义。

结果

在本文中,我们提出了一种基于图级图注意网络的新型计算方法(gGATLDA)来预测 LDA。首先,我们提取每个 lncRNA-疾病对的包围子图。其次,我们通过将 lncRNA 相似性和疾病相似性作为子图中的节点属性来构建特征向量。最后,我们通过将子图和特征向量输入到图神经网络(GNN)模型中训练 GNN 模型,并使用训练好的 GNN 模型来预测 lncRNA-疾病潜在关联得分。实验结果表明,我们的方法在五重交叉验证中比最先进的方法具有更高的接收器操作特征曲线下面积(AUC)、精度召回曲线下面积(AUPR)、准确性和 F1 分数。案例研究表明,我们的方法可以有效地识别与乳腺癌、胃癌、前列腺癌和肾癌相关的 lncRNA。

结论

实验结果表明,我们的方法是一种预测潜在 LDA 的有用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bd2/8729153/1a90e140eb75/12859_2021_4548_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验