Department of Biology, Stanford University, Stanford, California, USA.
CRISPR J. 2022 Feb;5(1):31-39. doi: 10.1089/crispr.2021.0065. Epub 2022 Jan 24.
Retrons are bacterial genetic elements involved in anti-phage defense. They have the unique ability to reverse transcribe RNA into multicopy single-stranded DNA (msDNA) that remains covalently linked to their template RNA. Retrons coupled with CRISPR-Cas9 in yeast have been shown to improve the efficiency of precise genome editing via homology-directed repair (HDR). In human cells, HDR editing efficiency has been limited by challenges associated with delivering extracellular donor DNA encoding the desired mutation. In this study, we tested the ability of retrons to produce msDNA as donor DNA and facilitate HDR by tethering msDNA to guide RNA in HEK293T and K562 cells. Through heterologous reconstitution of retrons from multiple bacterial species with the CRISPR-Cas9 system, we demonstrated HDR rates of up to 11.4%. Overall, our findings represent the first step in extending retron-based precise gene editing to human cells.
Retrons 是参与抗噬菌体防御的细菌遗传元件。它们具有将 RNA 逆转录为多拷贝单链 DNA(msDNA)的独特能力,该 DNA 与它们的模板 RNA 保持共价连接。在酵母中,带有 CRISPR-Cas9 的 retrons 已被证明可通过同源定向修复(HDR)提高精确基因组编辑的效率。在人类细胞中,HDR 编辑效率受到与递送人源细胞外供体 DNA (编码所需突变)相关的挑战的限制。在这项研究中,我们测试了 retrons 作为供体 DNA 产生 msDNA 的能力,并通过将 msDNA 与引导 RNA 连接来促进 HDR,该实验在 HEK293T 和 K562 细胞中进行。通过来自多个细菌物种的 retrons 与 CRISPR-Cas9 系统的异源重组,我们证明了高达 11.4%的 HDR 率。总体而言,我们的研究结果代表了将基于 retrons 的精确基因编辑扩展到人类细胞的第一步。