Suppr超能文献

扭矩和肌肉驱动的屈曲导致体外疝形成的不同风险:基于多尺度和多相结构的有限元研究

Torque- and Muscle-Driven Flexion Induce Disparate Risks of In Vitro Herniation: A Multiscale and Multiphasic Structure-Based Finite Element Study.

作者信息

Zhou Minhao, Huff Reece D, Abubakr Yousuf, O'Connell Grace D

机构信息

Mechanical Engineering Department, University of California, Berkeley, 2162 Etcheverry Hall, #1740, Berkeley, CA 94720-1740.

Mechanical Engineering Department, University of California, Berkeley, 5122 Etcheverry Hall, #1740, Berkeley, CA 94720-1740; Orthopaedic Surgery Department, University of California, San Francisco, San Francisco, CA 94143.

出版信息

J Biomech Eng. 2022 Jun 1;144(6). doi: 10.1115/1.4053402.

Abstract

The intervertebral disc is a complex structure that experiences multiaxial stresses regularly. Disc failure through herniation is a common cause of lower back pain, which causes reduced mobility and debilitating pain, resulting in heavy socioeconomic burdens. Unfortunately, herniation etiology is not well understood, partially due to challenges in replicating herniation in vitro. Previous studies suggest that flexion elevated risks of herniation. Thus, the objective of this study was to use a multiscale and multiphasic finite element model to evaluate the risk of failure under torque- or muscle-driven flexion. Models were developed to represent torque-driven flexion with the instantaneous center of rotation (ICR) located on the disc, and the more physiologically representative muscle-driven flexion with the ICR located anterior of the disc. Model predictions highlighted disparate disc mechanics regarding bulk deformation, stress-bearing mechanisms, and intradiscal stress-strain distributions. Specifically, failure was predicted to initiate at the bone-disc boundary under torque-driven flexion, which may explain why endplate junction failure, instead of herniation, has been the more common failure mode observed in vitro. By contrast, failure was predicted to initiate in the posterolateral annulus fibrosus under muscle-driven flexion, resulting in consistent herniation. Our findings also suggested that muscle-driven flexion combined with axial compression could be sufficient for provoking herniation in vitro and in silico. In conclusion, this study provided a computational framework for designing in vitro testing protocols that can advance the assessment of disc failure behavior and the performance of engineered disc implants.

摘要

椎间盘是一个复杂的结构,经常承受多轴应力。椎间盘突出导致的椎间盘失效是下背痛的常见原因,会导致活动能力下降和使人衰弱的疼痛,从而带来沉重的社会经济负担。不幸的是,椎间盘突出的病因尚未完全明确,部分原因是在体外复制椎间盘突出存在挑战。先前的研究表明,屈曲会增加椎间盘突出的风险。因此,本研究的目的是使用多尺度和多相有限元模型来评估在扭矩或肌肉驱动的屈曲下的失效风险。开发了模型来表示旋转瞬时中心(ICR)位于椎间盘上的扭矩驱动屈曲,以及ICR位于椎间盘前方的更具生理学代表性的肌肉驱动屈曲。模型预测突出了椎间盘在整体变形、应力承受机制和椎间盘内应力应变分布方面的不同力学特性。具体而言,预测在扭矩驱动屈曲下,失效将在骨 - 椎间盘边界处开始,这可能解释了为什么在体外观察到的更常见的失效模式是终板连接失效而非椎间盘突出。相比之下,预测在肌肉驱动屈曲下,失效将在纤维环后外侧开始,导致一致的椎间盘突出。我们的研究结果还表明,肌肉驱动屈曲与轴向压缩相结合足以在体外和计算机模拟中引发椎间盘突出。总之,本研究提供了一个计算框架,用于设计体外测试方案,以推进对椎间盘失效行为和工程化椎间盘植入物性能的评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验