Suppr超能文献

米拉: 一个用于多维组织图像的机器和深度学习单细胞分割和定量分析管道。

MIRIAM: A machine and deep learning single-cell segmentation and quantification pipeline for multi-dimensional tissue images.

机构信息

Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.

出版信息

Cytometry A. 2022 Jun;101(6):521-528. doi: 10.1002/cyto.a.24541. Epub 2022 Feb 7.

Abstract

Increasingly, highly multiplexed tissue imaging methods are used to profile protein expression at the single-cell level. However, a critical limitation is the lack of robust cell segmentation tools for tissue sections. We present Multiplexed Image Resegmentation of Internal Aberrant Membranes (MIRIAM) that combines (a) a pipeline for cell segmentation and quantification that incorporates machine learning-based pixel classification to define cellular compartments, (b) a novel method for extending incomplete cell membranes, and (c) a deep learning-based cell shape descriptor. Using human colonic adenomas as an example, we show that MIRIAM is superior to widely utilized segmentation methods and provides a pipeline that is broadly applicable to different imaging platforms and tissue types.

摘要

越来越多的高度多重化组织成像方法被用于在单细胞水平上描绘蛋白质表达。然而,一个关键的限制是缺乏用于组织切片的稳健的细胞分割工具。我们提出了内部异常膜的多重图像再分割(MIRIAM),它结合了(a) 一个细胞分割和量化的管道,该管道包含基于机器学习的像素分类来定义细胞区室,(b) 一种扩展不完整细胞膜的新方法,以及 (c) 基于深度学习的细胞形状描述符。我们用人结肠腺瘤作为一个例子,表明 MIRIAM 优于广泛使用的分割方法,并提供了一个广泛适用于不同成像平台和组织类型的管道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e656/9539903/74637a66a194/CYTO-101-521-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验