Suppr超能文献

GammaGateR:用于单细胞多重成像的半自动标记门控

GammaGateR: semi-automated marker gating for single-cell multiplexed imaging.

作者信息

Xiong Jiangmei, Kaur Harsimran, Heiser Cody N, McKinley Eliot T, Roland Joseph T, Coffey Robert J, Shrubsole Martha J, Wrobel Julia, Ma Siyuan, Lau Ken S, Vandekar Simon

机构信息

Department of Biostatistics, Vanderbilt University, USA.

Program of Chemical and Physical Biology, Vanderbilt University School of Medicine, USA.

出版信息

bioRxiv. 2023 Sep 23:2023.09.20.558645. doi: 10.1101/2023.09.20.558645.

Abstract

MOTIVATION

Multiplexed immunofluorescence (mIF) is an emerging assay for multichannel protein imaging that can decipher cell-level spatial features in tissues. However, existing automated cell phenotyping methods, such as clustering, face challenges in achieving consistency across experiments and often require subjective evaluation. As a result, mIF analyses often revert to marker gating based on manual thresholding of raw imaging data.

RESULTS

To address the need for an evaluable semi-automated algorithm, we developed GammaGateR, an R package for interactive marker gating designed specifically for segmented cell-level data from mIF images. Based on a novel closed-form gamma mixture model, GammaGateR provides estimates of marker-positive cell proportions and soft clustering of marker-positive cells. The model incorporates user-specified constraints that provide a consistent but slide-specific model fit. We compared GammaGateR against the newest unsupervised approach for annotating mIF data, employing two colon datasets and one ovarian cancer dataset for the evaluation. We showed that GammaGateR produces highly similar results to a silver standard established through manual annotation. Furthermore, we demonstrated its effectiveness in identifying biological signals, achieved by mapping known spatial interactions between CD68 and MUC5AC cells in the colon and by accurately predicting survival in ovarian cancer patients using the phenotype probabilities as input for machine learning methods. GammaGateR is a highly efficient tool that can improve the replicability of marker gating results, while reducing the time of manual segmentation.

AVAILABILITY AND IMPLEMENTATION

The R package is available at https://github.com/JiangmeiRubyXiong/GammaGateR.

摘要

动机

多重免疫荧光(mIF)是一种新兴的多通道蛋白质成像检测方法,可解析组织中的细胞水平空间特征。然而,现有的自动细胞表型分析方法,如聚类,在跨实验实现一致性方面面临挑战,并且通常需要主观评估。因此,mIF分析往往会基于原始成像数据的手动阈值设定而回归到标记物门控。

结果

为了满足对可评估的半自动算法的需求,我们开发了GammaGateR,这是一个用于交互式标记物门控的R包,专门为来自mIF图像的分割细胞水平数据设计。基于一种新颖的闭式伽马混合模型,GammaGateR提供标记物阳性细胞比例的估计以及标记物阳性细胞的软聚类。该模型纳入了用户指定的约束条件,从而提供了一个一致但针对切片特定的模型拟合。我们将GammaGateR与用于注释mIF数据的最新无监督方法进行了比较,使用两个结肠数据集和一个卵巢癌数据集进行评估。我们表明,GammaGateR产生的结果与通过手动注释建立的银标准高度相似。此外,我们通过绘制结肠中CD68和MUC5AC细胞之间已知的空间相互作用,并使用表型概率作为机器学习方法的输入来准确预测卵巢癌患者的生存率,证明了其在识别生物信号方面的有效性。GammaGateR是一个高效的工具,可以提高标记物门控结果的可重复性,同时减少手动分割的时间。

可用性和实现方式

R包可在https://github.com/JiangmeiRubyXiong/GammaGateR获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05dc/10541135/38e0dd7c59fd/nihpp-2023.09.20.558645v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验