Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.
Genetics. 2022 Mar 3;220(3). doi: 10.1093/genetics/iyab235.
Multicellular organisms rely on cell-cell communication to exchange information necessary for developmental processes and metabolic homeostasis. Cell-cell communication pathways can be inferred from transcriptomic datasets based on ligand-receptor expression. Recently, data generated from single-cell RNA sequencing have enabled ligand-receptor interaction predictions at an unprecedented resolution. While computational methods are available to infer cell-cell communication in vertebrates such a tool does not yet exist for Drosophila. Here, we generated a high-confidence list of ligand-receptor pairs for the major fly signaling pathways and developed FlyPhoneDB, a quantification algorithm that calculates interaction scores to predict ligand-receptor interactions between cells. At the FlyPhoneDB user interface, results are presented in a variety of tabular and graphical formats to facilitate biological interpretation. To illustrate that FlyPhoneDB can effectively identify active ligands and receptors to uncover cell-cell communication events, we applied FlyPhoneDB to Drosophila single-cell RNA sequencing data sets from adult midgut, abdomen, and blood, and demonstrate that FlyPhoneDB can readily identify previously characterized cell-cell communication pathways. Altogether, FlyPhoneDB is an easy-to-use framework that can be used to predict cell-cell communication between cell types from single-cell RNA sequencing data in Drosophila.
多细胞生物依赖细胞间通讯来交换发育过程和代谢稳态所需的信息。基于配体-受体表达,可从转录组数据集推断细胞间通讯途径。最近,单细胞 RNA 测序产生的数据使配体-受体相互作用预测达到了前所未有的分辨率。虽然已经有计算方法可以推断脊椎动物中的细胞间通讯,但对于果蝇来说,还没有这样的工具。在这里,我们为主要的蝇信号通路生成了一个高可信度的配体-受体对列表,并开发了 FlyPhoneDB,这是一种量化算法,可以计算相互作用分数来预测细胞间的配体-受体相互作用。在 FlyPhoneDB 用户界面中,结果以各种表格和图形格式呈现,以方便进行生物学解释。为了说明 FlyPhoneDB 可以有效地识别活性配体和受体,以揭示细胞间通讯事件,我们将 FlyPhoneDB 应用于来自成年中肠、腹部和血液的果蝇单细胞 RNA 测序数据集,并证明 FlyPhoneDB 可以轻松识别以前表征的细胞间通讯途径。总之,FlyPhoneDB 是一个易于使用的框架,可用于预测来自果蝇单细胞 RNA 测序数据的细胞间通讯。