Suppr超能文献

FlyPhoneDB:一个整合的基于网络的 Drosophila 细胞间通讯预测资源

FlyPhoneDB: an integrated web-based resource for cell-cell communication prediction in Drosophila.

机构信息

Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA.

Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK.

出版信息

Genetics. 2022 Mar 3;220(3). doi: 10.1093/genetics/iyab235.

Abstract

Multicellular organisms rely on cell-cell communication to exchange information necessary for developmental processes and metabolic homeostasis. Cell-cell communication pathways can be inferred from transcriptomic datasets based on ligand-receptor expression. Recently, data generated from single-cell RNA sequencing have enabled ligand-receptor interaction predictions at an unprecedented resolution. While computational methods are available to infer cell-cell communication in vertebrates such a tool does not yet exist for Drosophila. Here, we generated a high-confidence list of ligand-receptor pairs for the major fly signaling pathways and developed FlyPhoneDB, a quantification algorithm that calculates interaction scores to predict ligand-receptor interactions between cells. At the FlyPhoneDB user interface, results are presented in a variety of tabular and graphical formats to facilitate biological interpretation. To illustrate that FlyPhoneDB can effectively identify active ligands and receptors to uncover cell-cell communication events, we applied FlyPhoneDB to Drosophila single-cell RNA sequencing data sets from adult midgut, abdomen, and blood, and demonstrate that FlyPhoneDB can readily identify previously characterized cell-cell communication pathways. Altogether, FlyPhoneDB is an easy-to-use framework that can be used to predict cell-cell communication between cell types from single-cell RNA sequencing data in Drosophila.

摘要

多细胞生物依赖细胞间通讯来交换发育过程和代谢稳态所需的信息。基于配体-受体表达,可从转录组数据集推断细胞间通讯途径。最近,单细胞 RNA 测序产生的数据使配体-受体相互作用预测达到了前所未有的分辨率。虽然已经有计算方法可以推断脊椎动物中的细胞间通讯,但对于果蝇来说,还没有这样的工具。在这里,我们为主要的蝇信号通路生成了一个高可信度的配体-受体对列表,并开发了 FlyPhoneDB,这是一种量化算法,可以计算相互作用分数来预测细胞间的配体-受体相互作用。在 FlyPhoneDB 用户界面中,结果以各种表格和图形格式呈现,以方便进行生物学解释。为了说明 FlyPhoneDB 可以有效地识别活性配体和受体,以揭示细胞间通讯事件,我们将 FlyPhoneDB 应用于来自成年中肠、腹部和血液的果蝇单细胞 RNA 测序数据集,并证明 FlyPhoneDB 可以轻松识别以前表征的细胞间通讯途径。总之,FlyPhoneDB 是一个易于使用的框架,可用于预测来自果蝇单细胞 RNA 测序数据的细胞间通讯。

相似文献

2
Inference of Ligand-Receptor Pairs from Single-Cell Transcriptomics Data.
Methods Mol Biol. 2021;2346:1-10. doi: 10.1007/7651_2020_343.
3
PlantPhoneDB: A manually curated pan-plant database of ligand-receptor pairs infers cell-cell communication.
Plant Biotechnol J. 2022 Nov;20(11):2123-2134. doi: 10.1111/pbi.13893. Epub 2022 Jul 30.
4
CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes.
Nat Protoc. 2020 Apr;15(4):1484-1506. doi: 10.1038/s41596-020-0292-x. Epub 2020 Feb 26.
5
Analysis of Single-Cell Transcriptome Data in Drosophila.
Methods Mol Biol. 2022;2540:93-111. doi: 10.1007/978-1-0716-2541-5_4.
6
Dissection of intercellular communication using the transcriptome-based framework ICELLNET.
Nat Commun. 2021 Feb 17;12(1):1089. doi: 10.1038/s41467-021-21244-x.
8
A systematic evaluation of the computational tools for ligand-receptor-based cell-cell interaction inference.
Brief Funct Genomics. 2022 Sep 16;21(5):339-356. doi: 10.1093/bfgp/elac019.
9
Inference and analysis of cell-cell communication using CellChat.
Nat Commun. 2021 Feb 17;12(1):1088. doi: 10.1038/s41467-021-21246-9.

引用本文的文献

2
Dissecting the enhancer gene regulatory network in early Drosophila spermatogenesis.
Nat Commun. 2025 Jul 23;16(1):6766. doi: 10.1038/s41467-025-62046-9.
3
FlyPhoneDB2: A computational framework for analyzing cell-cell communication in scRNA-seq data integrating AlphaFold-multimer predictions.
Comput Struct Biotechnol J. 2025 Jun 20;27:2814-2822. doi: 10.1016/j.csbj.2025.06.032. eCollection 2025.
5
Distinct systemic impacts of Aβ42 and Tau revealed by whole-organism snRNA-seq.
Neuron. 2025 Jul 9;113(13):2065-2082.e8. doi: 10.1016/j.neuron.2025.04.017. Epub 2025 May 16.
6
New Insights and Implications of Cell-Cell Interactions in Developmental Biology.
Int J Mol Sci. 2025 Apr 23;26(9):3997. doi: 10.3390/ijms26093997.
7
Hepatic gluconeogenesis and PDK3 upregulation drive cancer cachexia in flies and mice.
Nat Metab. 2025 Apr;7(4):823-841. doi: 10.1038/s42255-025-01265-2. Epub 2025 Apr 16.
8
FlyRNAi.org 2025 update-expanded resources for new technologies and species.
Nucleic Acids Res. 2025 Jan 6;53(D1):D958-D965. doi: 10.1093/nar/gkae917.

本文引用的文献

1
Defining cell types and lineage in the Drosophila midgut using single cell transcriptomics.
Curr Opin Insect Sci. 2021 Oct;47:12-17. doi: 10.1016/j.cois.2021.02.008. Epub 2021 Feb 17.
2
Inference and analysis of cell-cell communication using CellChat.
Nat Commun. 2021 Feb 17;12(1):1088. doi: 10.1038/s41467-021-21246-9.
4
FlyBase: updates to the Drosophila melanogaster knowledge base.
Nucleic Acids Res. 2021 Jan 8;49(D1):D899-D907. doi: 10.1093/nar/gkaa1026.
6
A single-cell survey of blood.
Elife. 2020 May 12;9:e54818. doi: 10.7554/eLife.54818.
7
CellPhoneDB: inferring cell-cell communication from combined expression of multi-subunit ligand-receptor complexes.
Nat Protoc. 2020 Apr;15(4):1484-1506. doi: 10.1038/s41596-020-0292-x. Epub 2020 Feb 26.
8
A cell atlas of the adult midgut.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1514-1523. doi: 10.1073/pnas.1916820117. Epub 2020 Jan 8.
9
The Cellular Diversity and Transcription Factor Code of Drosophila Enteroendocrine Cells.
Cell Rep. 2019 Dec 17;29(12):4172-4185.e5. doi: 10.1016/j.celrep.2019.11.048.
10
NicheNet: modeling intercellular communication by linking ligands to target genes.
Nat Methods. 2020 Feb;17(2):159-162. doi: 10.1038/s41592-019-0667-5. Epub 2019 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验