Instituto de Neurociencias, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico.
Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Mexico.
Neuroscience. 2022 Apr 1;487:107-119. doi: 10.1016/j.neuroscience.2022.01.028. Epub 2022 Feb 5.
G-protein coupled receptors (GPCRs) modulate brain function by signaling through heterotrimeric G, G, and G protein subtypes. Researchers frequently study neuromodulation via these GPCR-subtypes on a 'cell-by-cell' basis. Although useful to explore a small number of interactions among neuromodulatory systems under controlled settings, this approach fails to account for a global organization of GPCRs in the brain. Furthermore, because multiple receptors and signal transduction pathways are present in single cells, neuromodulation is controlled by groups of GPCRs rather than by individual receptors. Using an integrative approach, the present study examined how large GPCR-subtype communities (ensembles) are expressed in different anatomical regions. Using the Allen Brain Atlas (http://www.brain-map.org/), we analyzed the mRNA expression energy of hundreds of GPCR-subtypes located in mouse, macaque, and human brains. We found that although there was a heterogeneous expression of GPCR-mRNA across all cortical regions, there were strong spatial correlations among congregated G-, G-, and G-linked systems. Correlation strength increased with age but dropped when randomly removing genes from their corresponding groups. These findings suggest that the expression patterns of GPCR subtypes and receptor families are intricately intertwined. Well-orchestrated interactions by neuromodulatory-GPCR ensembles could be crucial for the brain to function as a highly integrated complex system.
G 蛋白偶联受体(GPCRs)通过异三聚体 G、G 和 G 蛋白亚型进行信号转导,调节大脑功能。研究人员经常通过这些 GPCR-亚型在“逐个细胞”的基础上研究神经调节。虽然这种方法在受控环境下探索神经调节系统之间的少量相互作用很有用,但它不能解释大脑中 GPCR 的整体组织。此外,由于单个细胞中存在多种受体和信号转导途径,神经调节是由一群 GPCR 控制的,而不是由单个受体控制的。本研究采用综合方法,研究了不同解剖区域中大量 GPCR 亚型群落(集合)的表达情况。利用艾伦大脑图谱(http://www.brain-map.org/),我们分析了位于小鼠、猕猴和人类大脑中的数百种 GPCR-亚型的 mRNA 表达能量。我们发现,尽管所有皮质区域的 GPCR-mRNA 表达都存在异质性,但聚集的 G、G 和 G 连接系统之间存在强烈的空间相关性。相关性强度随年龄增长而增加,但当从相应的基因群中随机去除基因时,相关性强度会下降。这些发现表明,GPCR 亚型和受体家族的表达模式错综复杂地交织在一起。神经调节-GPCR 集合的协调良好的相互作用对于大脑作为一个高度集成的复杂系统发挥功能可能至关重要。