Fata Francesca, Gencheva Radosveta, Cheng Qing, Lullo Rachel, Ardini Matteo, Silvestri Ilaria, Gabriele Federica, Ippoliti Rodolfo, Bulman Christina A, Sakanari Judy A, Williams David L, Arnér Elias S J, Angelucci Francesco
Dept. of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy.
Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17177, Sweden.
Redox Biol. 2022 May;51:102278. doi: 10.1016/j.redox.2022.102278. Epub 2022 Mar 4.
Enzymes in the thiol redox systems of microbial pathogens are promising targets for drug development. In this study we characterized the thioredoxin reductase (TrxR) selenoproteins from Brugia malayi and Onchocerca volvulus, filarial nematode parasites and causative agents of lymphatic filariasis and onchocerciasis, respectively. The two filarial enzymes showed similar turnover numbers and affinities for different thioredoxin (Trx) proteins, but with a clear preference for the autologous Trx. Human TrxR1 (hTrxR1) had a high and similar specific activity versus the human and filarial Trxs, suggesting that, in vivo, hTrxR1 could possibly be the reducing agent of parasite Trxs once they are released into the host. Both filarial TrxRs were efficiently inhibited by auranofin and by a recently described inhibitor of human TrxR1 (TRi-1), but not as efficiently by the alternative compound TRi-2. The enzyme from B. malayi was structurally characterized also in complex with NADPH and auranofin, producing the first crystallographic structure of a nematode TrxR. The protein represents an unusual fusion of a mammalian-type TrxR protein architecture with an N-terminal glutaredoxin-like (Grx) domain lacking typical Grx motifs. Unlike thioredoxin glutathione reductases (TGRs) found in platyhelminths and mammals, which are also Grx-TrxR domain fusion proteins, the TrxRs from the filarial nematodes lacked glutathione disulfide reductase and Grx activities. The structural determinations revealed that the Grx domain of TrxR from B. malayi contains a cysteine (C22), conserved in TrxRs from clade IIIc nematodes, that directly interacts with the C-terminal cysteine-selenocysteine motif of the homo-dimeric subunit. Interestingly, despite this finding we found that altering C22 by mutation to serine did not affect enzyme catalysis. Thus, although the function of the Grx domain in these filarial TrxRs remains to be determined, the results obtained provide insights on key properties of this important family of selenoprotein flavoenzymes that are potential drug targets for treatment of filariasis.
微生物病原体硫醇氧化还原系统中的酶是药物开发的有前景的靶点。在本研究中,我们对马来布鲁线虫和盘尾丝虫的硫氧还蛋白还原酶(TrxR)硒蛋白进行了表征,这两种丝虫线虫寄生虫分别是淋巴丝虫病和盘尾丝虫病的病原体。这两种丝虫酶对不同硫氧还蛋白(Trx)蛋白显示出相似的周转数和亲和力,但明显更倾向于自身的Trx。人TrxR1(hTrxR1)对人和丝虫Trx具有高且相似的比活性,这表明在体内,一旦寄生虫Trx释放到宿主中,hTrxR1可能是其还原剂。两种丝虫TrxR都被金诺芬和最近描述的人TrxR1抑制剂(TRi - 1)有效抑制,但被替代化合物TRi - 2抑制的效率不高。马来布鲁线虫的酶还通过与NADPH和金诺芬形成复合物进行了结构表征,产生了线虫TrxR的第一个晶体结构。该蛋白代表了哺乳动物型TrxR蛋白结构与缺乏典型Grx基序的N端谷氧还蛋白样(Grx)结构域的异常融合。与在扁形虫和哺乳动物中发现的硫氧还蛋白谷胱甘肽还原酶(TGR)不同,后者也是Grx - TrxR结构域融合蛋白,丝虫线虫的TrxR缺乏谷胱甘肽二硫化物还原酶和Grx活性。结构测定表明,马来布鲁线虫TrxR的Grx结构域含有一个半胱氨酸(C22),在IIIc进化枝线虫的TrxR中保守,它直接与同源二聚体亚基的C端半胱氨酸 - 硒代半胱氨酸基序相互作用。有趣的是,尽管有这一发现,我们发现将C22突变为丝氨酸并不影响酶催化。因此,尽管这些丝虫TrxR中Grx结构域的功能仍有待确定,但获得的结果为这个重要的硒蛋白黄素酶家族的关键特性提供了见解,这些酶是治疗丝虫病的潜在药物靶点。