Gabriele Federica, Bogard Jala A, Palerma Marta, Ardini Matteo, Byrne Margaret E, Chen Xian-Ming, Petukhov Pavel A, Ippoliti Rodolfo, Angelucci Francesco, Williams David L
Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila 67100, Italy.
Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States.
Biochemistry. 2025 May 20;64(10):2212-2225. doi: 10.1021/acs.biochem.5c00059. Epub 2025 Apr 30.
Cryptosporidiosis poses a significant health threat to young children and immunocompromised individuals due to the lack of effective therapies. Here, we demonstrate that the redox system is fundamentally different from their human host. Humans possess independent glutathione (GSH) and thioredoxin (Trx) pathways. lacks authentic glutathione reductase (GR), and we hypothesize that it most likely utilizes the Trx reductase (TrxR) plus Trx couple to maintain GSH in its reduced state. Given the central role of CpTrxR in the parasite's redox homeostasis, we focus on its functional and structural characterization. We find that the combination of CpTrxR and Trx efficiently reduces oxidized GSH, in effect functioning as a GR. Auranofin, a gold-containing compound, is known to kill parasites in culture, and here we demonstrate that CpTrxR is irreversibly inhibited by this compound. The crystallographic structures of CpTrxR, a type II TrxR characterized by the distinctive C-terminal -CGGGKCG motif found exclusively in apicomplexan parasites, including spp., the causative agents of malaria, are presented. Our study characterizes three unprecedented catalytically competent intermediates of the C-terminal tail in the so-called "in" conformations, providing insights into the structural and functional properties of type II TrxR. These findings offer valuable information for the design of CpTrxR inhibitors, addressing the pressing need for new therapeutic options against cryptosporidiosis, particularly in populations where current treatments are insufficiently effective.
由于缺乏有效的治疗方法,隐孢子虫病对幼儿和免疫功能低下的个体构成了重大的健康威胁。在此,我们证明隐孢子虫的氧化还原系统与人类宿主有根本差异。人类拥有独立的谷胱甘肽(GSH)和硫氧还蛋白(Trx)途径。隐孢子虫缺乏真正的谷胱甘肽还原酶(GR),我们推测它很可能利用硫氧还蛋白还原酶(TrxR)加Trx偶联来维持GSH处于还原状态。鉴于隐孢子虫硫氧还蛋白还原酶(CpTrxR)在寄生虫氧化还原稳态中的核心作用,我们专注于其功能和结构表征。我们发现CpTrxR和Trx的组合能有效还原氧化型GSH,实际上起到了GR的作用。金诺芬是一种含金化合物,已知能在培养物中杀死寄生虫,在此我们证明该化合物能不可逆地抑制CpTrxR。本文展示了CpTrxR的晶体结构,它是一种II型TrxR,其特征是在包括疟原虫(疟疾的病原体)在内的顶复门寄生虫中独有的独特C末端-CGGGKCG基序。我们的研究表征了所谓 “in” 构象中C末端尾巴的三种前所未有的具有催化活性的中间体,为II型TrxR的结构和功能特性提供了见解。这些发现为设计CpTrxR抑制剂提供了有价值的信息,满足了对抗隐孢子虫病新治疗选择的迫切需求,特别是在当前治疗效果不佳的人群中。