Jiang Wei, Tong Tao, Li Wen, Huang Zhenghong, Chen Guang, Zeng Fanrong, Riaz Adeel, Amoanimaa-Dede Hanna, Pan Rui, Zhang Wenying, Deng Fenglin, Chen Zhong-Hua
Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 434025, China.
Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China.
Plant Cell Physiol. 2023 Jan 30;63(12):1857-1872. doi: 10.1093/pcp/pcac034.
Drought significantly affects stomatal regulation, leading to the reduced growth and productivity of plants. Plant 14-3-3 proteins were reported to participate in drought response by regulating the activities of a wide array of target proteins. However, the molecular evolution, expression pattern and physiological functions of 14-3-3s under drought stress remain unclear. In this study, a comparative genomic analysis and the tissue-specific expression of 14-3-3s revealed the highly conserved and early evolution of 14-3-3s in green plants and duplication and expansion of the 14-3-3s family members in angiosperms. Using barley (Hordeum vulgare) for the functional characterization of 14-3-3 proteins, the transcripts of five members out of six Hv14-3-3s were highly induced by drought in the drought-tolerant line, XZ141. Suppression of the expression of Hv14-3-3A through barley stripe mosaic virus-virus induced gene silencing resulted in significantly increased drought sensitivity and stomatal density as well as significantly reduced net CO2 assimilation (A) and stomatal conductance (gs) in barley. Moreover, we showed the functional interactions between Hv14-3-3s and key proteins in drought and stomatal responses in plants-such as Open Stomata 1 (HvOST1), Slow Anion Channel 1 (HvSLAC1), three Heat Shock Proteins (HvHSP90-1/2/5) and Dehydration-Responsive Element-Binding 3 (HvDREB3). Taken together, we propose that 14-3-3s are highly evolutionarily conserved proteins and that Hv14-3-3s represent a group of the core regulatory components for the rapid stomatal response to drought in barley. This study will provide important evolutionary and molecular evidence for future applications of 14-3-3 proteins in breeding drought-tolerant crops in a changing global climate.
干旱显著影响气孔调节,导致植物生长和生产力下降。据报道,植物14-3-3蛋白通过调节多种靶蛋白的活性参与干旱响应。然而,干旱胁迫下14-3-3蛋白的分子进化、表达模式和生理功能仍不清楚。在本研究中,对14-3-3蛋白进行比较基因组分析和组织特异性表达分析,揭示了绿色植物中14-3-3蛋白的高度保守性和早期进化,以及被子植物中14-3-3蛋白家族成员的复制和扩增。利用大麦(Hordeum vulgare)对14-3-3蛋白进行功能鉴定,耐旱品种XZ141中6个Hv14-3-3蛋白成员中的5个转录本在干旱条件下被高度诱导。通过大麦条纹花叶病毒诱导的基因沉默抑制Hv14-3-3A的表达,导致大麦的干旱敏感性和气孔密度显著增加,净CO2同化率(A)和气孔导度(gs)显著降低。此外,我们还展示了Hv14-3-3蛋白与植物干旱和气孔响应中的关键蛋白之间的功能相互作用,如开放气孔1(HvOST1)、慢阴离子通道1(HvSLAC1)、三种热休克蛋白(HvHSP90-1/2/5)和脱水响应元件结合蛋白3(HvDREB3)。综上所述,我们认为14-3-3蛋白是高度进化保守的蛋白,Hv14-3-3蛋白代表了大麦中气孔对干旱快速响应的一组核心调控成分。本研究将为未来在全球气候变化背景下利用14-3-3蛋白培育耐旱作物提供重要的进化和分子证据。