Suppr超能文献

志贺氏病毒 Sf22 和 KRT47 需要外膜蛋白 C 才能感染。

Shigella viruses Sf22 and KRT47 require outer membrane protein C for infection.

机构信息

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.

Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA; Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611.

出版信息

Biochim Biophys Acta Biomembr. 2022 Jul 1;1864(7):183920. doi: 10.1016/j.bbamem.2022.183920. Epub 2022 Mar 28.

Abstract

Viruses rely on hosts for their replication: thus, a critical step in the infection process is identifying a suitable host cell. Bacterial viruses, known as bacteriophages or phages, often use receptor binding proteins to discriminate between susceptible and non-susceptible hosts. By being able to evade predation, bacteria with modified or deleted receptor-encoding genes often undergo positive selection during growth in the presence of phage. Depending on the specific receptor(s) a phage uses, this may subsequently affect the bacteria's ability to form biofilms, its resistance to antibiotics, pathogenicity, or its phenotype in various environments. In this study, we characterize the interactions between two T4-like phages, Sf22 and KRT47, and their host receptor S. flexneri outer membrane protein C (OmpC). Results indicate that these phages use a variety of surface features on the protein, and that complete resistance most frequently occurs when hosts delete the ompC gene in full, encode premature stop codons to prevent OmpC synthesis, or eliminate specific regions encoding exterior loops.

摘要

病毒依赖宿主进行复制

因此,感染过程中的一个关键步骤是识别合适的宿主细胞。细菌病毒,称为噬菌体或噬菌体,通常使用受体结合蛋白来区分易感和不易感宿主。通过能够逃避捕食,具有修饰或缺失受体编码基因的细菌在噬菌体存在下生长时经常经历正选择。根据噬菌体使用的特定受体,这可能随后影响细菌形成生物膜的能力、对抗生素的耐药性、致病性或其在各种环境中的表型。在这项研究中,我们描述了两种 T4 样噬菌体 Sf22 和 KRT47 与其宿主受体 S. flexneri 外膜蛋白 C (OmpC) 之间的相互作用。结果表明,这些噬菌体使用蛋白质表面的多种特征,并且当宿主完全删除 ompC 基因、编码提前终止密码子以阻止 OmpC 合成或消除编码外环的特定区域时,最常发生完全抗性。

相似文献

1
Shigella viruses Sf22 and KRT47 require outer membrane protein C for infection.
Biochim Biophys Acta Biomembr. 2022 Jul 1;1864(7):183920. doi: 10.1016/j.bbamem.2022.183920. Epub 2022 Mar 28.
2
Host Range Expansion of Phage Sf6 Evolves through Point Mutations in the Tailspike.
J Virol. 2022 Aug 24;96(16):e0092922. doi: 10.1128/jvi.00929-22. Epub 2022 Jul 27.
3
Manipulating Interactions between T4 Phage Long Tail Fibers and Escherichia coli Receptors.
Appl Environ Microbiol. 2021 Jun 11;87(13):e0042321. doi: 10.1128/AEM.00423-21.
4
Selection for Phage Resistance Reduces Virulence of Shigella flexneri.
Appl Environ Microbiol. 2022 Jan 25;88(2):e0151421. doi: 10.1128/AEM.01514-21. Epub 2021 Nov 17.
5
The host outer membrane proteins OmpA and OmpC are associated with the Shigella phage Sf6 virion.
Virology. 2011 Jan 20;409(2):319-27. doi: 10.1016/j.virol.2010.10.030. Epub 2010 Nov 10.
7
The Antibacterial Effects of Cocktail and Single Forms of Lytic Phages Belonging to and Families from Sewage against and .
Biomed Res Int. 2022 Nov 25;2022:7833565. doi: 10.1155/2022/7833565. eCollection 2022.
8
Mosaic Evolution of Beta-Barrel-Porin-Encoding Genes in .
Appl Environ Microbiol. 2022 Apr 12;88(7):e0006022. doi: 10.1128/aem.00060-22. Epub 2022 Mar 14.
9
Prevalence and molecular characterization of multidrug-resistant Shigella species of food origins and their inactivation by specific lytic bacteriophages.
Int J Food Microbiol. 2019 Sep 16;305:108252. doi: 10.1016/j.ijfoodmicro.2019.108252. Epub 2019 Jun 13.
10
OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella.
Mol Microbiol. 2014 Apr;92(1):47-60. doi: 10.1111/mmi.12536. Epub 2014 Mar 6.

引用本文的文献

1
Moo19 and B2: Structures of podophages with = 9 geometry and tailspikes with esterase activity.
Sci Adv. 2024 Dec 20;10(51):eadt0022. doi: 10.1126/sciadv.adt0022. Epub 2024 Dec 18.
2
Host Range Expansion of Phage Sf6 Evolves through Point Mutations in the Tailspike.
J Virol. 2022 Aug 24;96(16):e0092922. doi: 10.1128/jvi.00929-22. Epub 2022 Jul 27.

本文引用的文献

1
Molecular anatomy of the receptor binding module of a bacteriophage long tail fiber.
PLoS Pathog. 2019 Dec 19;15(12):e1008193. doi: 10.1371/journal.ppat.1008193. eCollection 2019 Dec.
2
Phage Therapy in the Postantibiotic Era.
Clin Microbiol Rev. 2019 Jan 16;32(2). doi: 10.1128/CMR.00066-18. Print 2019 Apr.
3
Salmonella Phage S16 Tail Fiber Adhesin Features a Rare Polyglycine Rich Domain for Host Recognition.
Structure. 2018 Dec 4;26(12):1573-1582.e4. doi: 10.1016/j.str.2018.07.017. Epub 2018 Sep 20.
5
Molecular and Evolutionary Determinants of Bacteriophage Host Range.
Trends Microbiol. 2019 Jan;27(1):51-63. doi: 10.1016/j.tim.2018.08.006. Epub 2018 Sep 1.
6
Shigella Phages Isolated during a Dysentery Outbreak Reveal Uncommon Structures and Broad Species Diversity.
J Virol. 2018 Mar 28;92(8). doi: 10.1128/JVI.02117-17. Print 2018 Apr 15.
7
Emergence of antibiotic resistant Shigella species: A matter of concern.
J Infect Public Health. 2018 Jul-Aug;11(4):451-454. doi: 10.1016/j.jiph.2017.09.025. Epub 2017 Oct 20.
8
Bacteriophage preparation lytic for Shigella significantly reduces Shigella sonnei contamination in various foods.
PLoS One. 2017 Mar 31;12(3):e0175256. doi: 10.1371/journal.pone.0175256. eCollection 2017.
9
Extending the lifetime of antibiotics: how can phage therapy help?
Future Microbiol. 2016 Sep;11:1105-7. doi: 10.2217/fmb-2016-0133. Epub 2016 Aug 22.
10
Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa.
Sci Rep. 2016 May 26;6:26717. doi: 10.1038/srep26717.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验