Suppr超能文献

基于 CT 的影像组学用于膀胱癌肌层浸润状态的术前预测,并与放射科医生的评估进行比较。

CT-based radiomics for the preoperative prediction of the muscle-invasive status of bladder cancer and comparison to radiologists' assessment.

机构信息

Department of Radiology, Peking University First Hospital, Beijing, China.

Department of Radiology, Peking University First Hospital, Beijing, China.

出版信息

Clin Radiol. 2022 Jun;77(6):e473-e482. doi: 10.1016/j.crad.2022.02.019. Epub 2022 Mar 30.

Abstract

AIM

To develop a radiomics model to predict the muscle-invasive status of bladder cancer (BC) in contrast-enhanced computed tomography (CECT) images, compared with radiologists' interpretations.

MATERIALS AND METHODS

One hundred and eighty-eight CECT images with histopathologically confirmed BC were retrieved retrospectively from November 2018 to December 2019 and were divided randomly into the training (n=120) and test dataset (n=68). The BC were annotated manually and validated on the venous phase by a general radiologist and an experienced radiologist, respectively. The radiomics analysis included radiomics feature extraction and model development. The same images were also evaluated by two radiologists. The diagnostic performance of radiomics was evaluated using receiver operating characteristic (ROC) curve analysis and the area under the ROC curve (AUC), sensitivity, and specificity were calculated. The predictive performance of radiomics was then compared to visual assessments of the two radiologists.

RESULTS

The radiomics model reached an AUC (95% confidence interval [CI]) of 0.979 (0.935-0.996) and 0.894 (0.796-0.956) in the training and test dataset, respectively. The radiomics model outperformed the visual assessment of radiologist A and B both in the training (0.865 [0.791-0.921], 0.894 [0.824-0.943]) and test dataset (0.766 [0.647-0.860], 0.826 [0.715-0.907]). Pairwise comparisons showed that the specificities of the radiomics model were higher than the radiologists (85.3-96.7% versus 47.1-58.3%, all p<0.05), but the sensitivities were comparable between the radiomics and the radiologists (79.4-90% versus 91.2-96.7%; all p>0.05).

CONCLUSIONS

A radiomics model was developed that outperformed the radiologists' visual assessment in predicting the muscle-invasive status of BC in the venous phase of CT images.

摘要

目的

与放射科医生的解读相比,开发一种基于增强 CT(CECT)图像的放射组学模型来预测膀胱癌(BC)的肌层浸润状态。

材料与方法

回顾性地从 2018 年 11 月至 2019 年 12 月检索了 188 例经组织病理学证实的 CECT 图像,并将其随机分为训练集(n=120)和测试数据集(n=68)。BC 由一名普通放射科医生和一名经验丰富的放射科医生分别在静脉期进行手动注释和验证。放射组学分析包括放射组学特征提取和模型开发。相同的图像也由两名放射科医生进行评估。使用受试者工作特征(ROC)曲线分析评估放射组学的诊断性能,并计算 ROC 曲线下面积(AUC)、敏感性和特异性。然后将放射组学的预测性能与两名放射科医生的视觉评估进行比较。

结果

放射组学模型在训练集和测试数据集的 AUC(95%置信区间[CI])分别为 0.979(0.935-0.996)和 0.894(0.796-0.956)。在训练集(0.865 [0.791-0.921],0.894 [0.824-0.943])和测试数据集(0.766 [0.647-0.860],0.826 [0.715-0.907])中,放射组学模型均优于放射科医生的视觉评估。两两比较显示,放射组学模型的特异性高于放射科医生(85.3-96.7%与 47.1-58.3%,均 p<0.05),但敏感性在放射组学模型与放射科医生之间相当(79.4-90%与 91.2-96.7%;均 p>0.05)。

结论

放射组学模型的开发优于放射科医生的视觉评估,可用于预测 CT 静脉期图像中 BC 的肌层浸润状态。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验