Suppr超能文献

一项系统生物学研究揭示了褪黑素生物合成基因 O-甲基转移酶 1(OMT1)与小麦(Triticum aestivum L.)对干旱和盐胁迫综合耐受性之间的关联。

A systems biology study unveils the association between a melatonin biosynthesis gene, O-methyl transferase 1 (OMT1) and wheat (Triticum aestivum L.) combined drought and salinity stress tolerance.

机构信息

Department of Agriculture and Natural Resources, Higher Education Center of Eghlid, Eghlid, Iran.

Department of Crop Production and Plant Breeding, Shiraz University, Shiraz, Iran.

出版信息

Planta. 2022 Apr 6;255(5):99. doi: 10.1007/s00425-022-03885-4.

Abstract

Enhanced levels of endogenous melatonin in the root of wheat, mainly through the OMT1 gene, augment the antioxidant system, reestablish redox homeostasis and are associated with combined stress tolerance. A systems biology approach, including a collection of computational analyses and experimental assays, led us to uncover some aspects of a poorly understood phenomenon, namely wheat (Triticum aestivum L.) combined drought and salinity stress tolerance. Accordingly, a cross-study comparison of stress experiments was performed via a meta-analysis of Expressed Sequence Tags (ESTs) data from wheat roots to uncover the overlapping gene network of drought and salinity stresses. Identified differentially expressed genes were functionally annotated by gene ontology enrichment analysis and gene network analysis. Among those genes, O-methyl transferase 1 (OMT1) was highlighted as a more important (hub) gene in the dual-stress response gene network. Afterwards, the potential roles of OMT1 in mediating physiochemical indicators of stress tolerance were investigated in two wheat genotypes differing in abiotic stress tolerance. Regression analysis and correspondence analysis (CA) confirmed that the expression profiles of the OMT1 gene and variations in melatonin content, antioxidant enzyme activities, proline accumulation, HO and malondialdehyde (MDA) contents are significantly associated with combined stress tolerance. These results reveal that the OMT1 gene may contribute to wheat combined drought and salinity stress tolerance through augmenting the antioxidant system and re-establishing redox homeostasis, probably via the regulation of melatonin biosynthesis as a master regulator molecule. Our findings provide new insights into the roles of melatonin in wheat combined drought and salinity stress tolerance and suggest a novel plausible regulatory node through the OMT1 gene to improve multiple-stress tolerant crops.

摘要

内源褪黑素水平在小麦根部的增强,主要通过 OMT1 基因,增强抗氧化系统,重新建立氧化还原稳态,并与复合胁迫耐受性相关。一种系统生物学方法,包括一系列计算分析和实验测定,使我们能够揭示一个理解甚少的现象的一些方面,即小麦(Triticum aestivum L.)的干旱和盐胁迫耐受性。因此,通过对小麦根 ESTs 数据的元分析,对胁迫实验进行了交叉研究比较,以揭示干旱和盐胁迫的重叠基因网络。通过基因本体富集分析和基因网络分析对差异表达基因进行了功能注释。在这些基因中,O-甲基转移酶 1(OMT1)被突出为双胁迫响应基因网络中更重要的(枢纽)基因。之后,在两种对非生物胁迫耐受性不同的小麦基因型中,研究了 OMT1 基因在介导胁迫耐受性的生理化学指标方面的潜在作用。回归分析和对应分析(CA)证实,OMT1 基因的表达谱以及褪黑素含量、抗氧化酶活性、脯氨酸积累、HO 和丙二醛(MDA)含量的变化与复合胁迫耐受性显著相关。这些结果表明,OMT1 基因可能通过增强抗氧化系统和重新建立氧化还原稳态,从而可能通过调节褪黑素生物合成作为主调控分子,对小麦的干旱和盐胁迫耐受性产生贡献。我们的研究结果为褪黑素在小麦干旱和盐胁迫耐受性中的作用提供了新的见解,并提出了一个通过 OMT1 基因改善多胁迫耐受作物的新的可能调控节点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验