Suppr超能文献

用于机器人髋关节外骨骼应用的与主体无关的连续运动模式分类。

Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications.

出版信息

IEEE Trans Biomed Eng. 2022 Oct;69(10):3234-3242. doi: 10.1109/TBME.2022.3165547. Epub 2022 Sep 19.

Abstract

Autonomous lower-limb exoskeletons must modulate assistance based on locomotion mode (e.g., ramp or stair ascent) to adapt to the corresponding changes in human biological joint dynamics. However, current mode classification strategies for exoskeletons often require user-specific tuning, have a slow update rate, and rely on additional sensors outside of the exoskeleton sensor suite. In this study, we introduce a deep convolutional neural network-based locomotion mode classifier for hip exoskeleton applications using an open-source gait biomechanics dataset with various wearable sensors. Our approach removed the limitations of previous systems as it is 1) subject-independent (i.e., no user-specific data), 2) capable of continuously classifying for smooth and seamless mode transitions, and 3) only utilizes minimal wearable sensors native to a conventional hip exoskeleton. We optimized our model, based on several important factors contributing to overall performance, such as transition label timing, model architecture, and sensor placement, which provides a holistic understanding of mode classifier design. Our optimized DL model showed a 3.13% classification error (steady-state: 0.80 ± 0.38% and transitional: 6.49 ± 1.42%), outperforming other machine learning-based benchmarks commonly practiced in the field (p<0.05). Furthermore, our multi-modal analysis indicated that our model can maintain high performance in different settings such as unseen slopes on stairs or ramps. Thus, our study presents a novel locomotion mode framework, capable of advancing robotic exoskeleton applications toward assisting community ambulation.

摘要

自主下肢外骨骼必须根据运动模式(例如,斜坡或楼梯上升)调节辅助,以适应人体生物关节动力学的相应变化。然而,当前外骨骼的模式分类策略通常需要用户特定的调整,更新速度慢,并且依赖于外骨骼传感器套件之外的附加传感器。在这项研究中,我们使用具有各种可穿戴传感器的开源步态生物力学数据集,为髋部外骨骼应用引入了基于深度卷积神经网络的运动模式分类器。我们的方法消除了以前系统的限制,因为它是 1)独立于主题的(即,没有特定于用户的数据),2)能够连续分类,以实现平稳和无缝的模式转换,以及 3)仅利用传统髋部外骨骼固有的最小可穿戴传感器。我们根据对整体性能有重要影响的几个因素(例如,过渡标签时间、模型架构和传感器放置)优化了我们的模型,这提供了对模式分类器设计的全面理解。我们优化的深度学习模型显示出 3.13%的分类错误(稳态:0.80 ± 0.38%和过渡:6.49 ± 1.42%),优于该领域常用的其他基于机器学习的基准(p<0.05)。此外,我们的多模态分析表明,我们的模型可以在不同的设置(例如,楼梯或斜坡上看不见的斜坡)中保持高性能。因此,我们的研究提出了一种新的运动模式框架,能够推进机器人外骨骼应用,以帮助社区行走。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验