Suppr超能文献

通过生物关节力矩估计实现任务无关的外骨骼控制。

Task-agnostic exoskeleton control via biological joint moment estimation.

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Nature. 2024 Nov;635(8038):337-344. doi: 10.1038/s41586-024-08157-7. Epub 2024 Nov 13.

Abstract

Lower-limb exoskeletons have the potential to transform the way we move, but current state-of-the-art controllers cannot accommodate the rich set of possible human behaviours that range from cyclic and predictable to transitory and unstructured. We introduce a task-agnostic controller that assists the user on the basis of instantaneous estimates of lower-limb biological joint moments from a deep neural network. By estimating both hip and knee moments in-the-loop, our approach provided multi-joint, coordinated assistance through our autonomous, clothing-integrated exoskeleton. When deployed during 28 activities, spanning cyclic locomotion to unstructured tasks (for example, passive meandering and high-speed lateral cutting), the network accurately estimated hip and knee moments with an average R of 0.83 relative to ground truth. Further, our approach significantly outperformed a best-case task classifier-based method constructed from splines and impedance parameters. When tested on ten activities (including level walking, running, lifting a 25 lb (roughly 11 kg) weight and lunging), our controller significantly reduced user energetics (metabolic cost or lower-limb biological joint work depending on the task) relative to the zero torque condition, ranging from 5.3 to 19.7%, without any manual controller modifications among activities. Thus, this task-agnostic controller can enable exoskeletons to aid users across a broad spectrum of human activities, a necessity for real-world viability.

摘要

下肢外骨骼有可能改变我们的运动方式,但当前最先进的控制器无法适应从周期性和可预测到短暂和无结构的各种可能的人类行为。我们引入了一种与任务无关的控制器,该控制器基于深度神经网络即时估计下肢生物关节力矩,为用户提供帮助。通过在闭环中估计髋关节和膝关节力矩,我们的方法通过自主、服装集成的外骨骼为多关节提供协调的辅助。在 28 项活动中进行部署时,涵盖了从周期性运动到非结构化任务(例如,被动蜿蜒和高速横向切割),该网络准确地估计了髋关节和膝关节力矩,平均 R 值相对于地面真相为 0.83。此外,我们的方法明显优于基于样条和阻抗参数的最佳任务分类器方法。在十种活动(包括水平行走、跑步、举起 25 磅(约 11 公斤)的重量和弓步)上进行测试时,我们的控制器与零扭矩条件相比,显著降低了用户的能量消耗(代谢成本或下肢生物关节功,具体取决于任务),范围从 5.3%到 19.7%,在活动之间无需进行任何手动控制器修改。因此,这种与任务无关的控制器可以使外骨骼能够帮助用户完成广泛的人类活动,这是实现现实可行性的必要条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验