Suppr超能文献

外骨骼在运动辅助方面的发展机遇与挑战。

Opportunities and challenges in the development of exoskeletons for locomotor assistance.

机构信息

John A Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

Department of Physical Therapy, College of Health and Rehabilitation Sciences: Sargent, Boston University, Boston, MA, USA.

出版信息

Nat Biomed Eng. 2023 Apr;7(4):456-472. doi: 10.1038/s41551-022-00984-1. Epub 2022 Dec 22.

Abstract

Exoskeletons can augment the performance of unimpaired users and restore movement in individuals with gait impairments. Knowledge of how users interact with wearable devices and of the physiology of locomotion have informed the design of rigid and soft exoskeletons that can specifically target a single joint or a single activity. In this Review, we highlight the main advances of the past two decades in exoskeleton technology and in the development of lower-extremity exoskeletons for locomotor assistance, discuss research needs for such wearable robots and the clinical requirements for exoskeleton-assisted gait rehabilitation, and outline the main clinical challenges and opportunities for exoskeleton technology.

摘要

外骨骼可增强健全使用者的表现能力,并恢复步态障碍患者的运动能力。人们对外骨骼设备的使用方式和运动生理学的了解,为刚性和软性外骨骼的设计提供了信息,这些外骨骼可以专门针对单个关节或单个活动。在这篇综述中,我们强调了过去二十年在外骨骼技术和下肢外骨骼运动辅助方面的主要进展,讨论了此类可穿戴机器人的研究需求以及外骨骼辅助步态康复的临床要求,并概述了外骨骼技术的主要临床挑战和机遇。

相似文献

1
Opportunities and challenges in the development of exoskeletons for locomotor assistance.
Nat Biomed Eng. 2023 Apr;7(4):456-472. doi: 10.1038/s41551-022-00984-1. Epub 2022 Dec 22.
2
Systematic review on wearable lower-limb exoskeletons for gait training in neuromuscular impairments.
J Neuroeng Rehabil. 2021 Feb 1;18(1):22. doi: 10.1186/s12984-021-00815-5.
4
Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review.
Gait Posture. 2022 Oct;98:343-354. doi: 10.1016/j.gaitpost.2022.09.082. Epub 2022 Sep 26.
5
Exoskeleton robots for lower limb assistance: A review of materials, actuation, and manufacturing methods.
Proc Inst Mech Eng H. 2021 Dec;235(12):1375-1385. doi: 10.1177/09544119211032010. Epub 2021 Jul 13.
7
8
Physiotherapy students' perspectives on the use and implementation of exoskeletons as a rehabilitative technology in clinical settings.
Disabil Rehabil Assist Technol. 2022 Oct;17(7):840-847. doi: 10.1080/17483107.2020.1818139. Epub 2020 Sep 15.
9
Application of human-centered design principles to wearable exoskeletons: a systematic review.
Disabil Rehabil Assist Technol. 2025 May;20(4):767-788. doi: 10.1080/17483107.2024.2415433. Epub 2024 Oct 23.
10
Appraisals of robotic locomotor exoskeletons for gait: focus group insights from potential users with spinal cord injuries.
Disabil Rehabil Assist Technol. 2020 Oct;15(7):762-772. doi: 10.1080/17483107.2020.1745910. Epub 2020 Apr 7.

引用本文的文献

2
Wearable Robots for Rehabilitation and Assistance of Gait: A Narrative Review.
Ann Rehabil Med. 2025 Aug;49(4):187-195. doi: 10.5535/arm.250093. Epub 2025 Aug 18.
3
Wearable Bioelectronics for Home-Based Monitoring and Treatment of Muscle Atrophy.
Adv Sci (Weinh). 2025 Sep;12(33):e02831. doi: 10.1002/advs.202502831. Epub 2025 Jul 12.
5
Learning to suppress tremors: a deep reinforcement learning-enabled soft exoskeleton for Parkinson's patients.
Front Robot AI. 2025 May 21;12:1537470. doi: 10.3389/frobt.2025.1537470. eCollection 2025.
6
Level-Ground and Stair Adaptation for Hip Exoskeletons Based on Continuous Locomotion Mode Perception.
Cyborg Bionic Syst. 2025 Apr 22;6:0248. doi: 10.34133/cbsystems.0248. eCollection 2025.
7
OpenSEA: a 3D printed planetary gear series elastic actuator for a compliant elbow joint exoskeleton.
Front Robot AI. 2025 Feb 28;12:1528266. doi: 10.3389/frobt.2025.1528266. eCollection 2025.
8
Biomechanical models in the lower-limb exoskeletons development: a review.
J Neuroeng Rehabil. 2025 Jan 24;22(1):12. doi: 10.1186/s12984-025-01556-5.
9
A compliant metastructure design with reconfigurability up to six degrees of freedom.
Nat Commun. 2025 Jan 16;16(1):719. doi: 10.1038/s41467-024-55591-2.
10
Biodynamic Modeling and Analysis of Human-Exoskeleton Interactions in Simulated Patient Handling Tasks.
Hum Factors. 2025 Jul;67(7):641-655. doi: 10.1177/00187208241311271. Epub 2025 Jan 3.

本文引用的文献

1
Personalizing exoskeleton assistance while walking in the real world.
Nature. 2022 Oct;610(7931):277-282. doi: 10.1038/s41586-022-05191-1. Epub 2022 Oct 12.
2
Enhancing Voluntary Motion with Modular, Backdrivable, Powered Hip and Knee Orthoses.
IEEE Robot Autom Lett. 2022 Jul;7(3):6155-6162. doi: 10.1109/LRA.2022.3145580. Epub 2022 Jan 25.
3
Rethinking the tools in the toolbox.
J Neuroeng Rehabil. 2022 Jun 20;19(1):61. doi: 10.1186/s12984-022-01041-3.
4
Robot-assisted gait training: more randomized controlled trials are needed! Or maybe not?
J Neuroeng Rehabil. 2022 Jun 8;19(1):58. doi: 10.1186/s12984-022-01037-z.
5
Soft robotic exosuit augmented high intensity gait training on stroke survivors: a pilot study.
J Neuroeng Rehabil. 2022 Jun 3;19(1):51. doi: 10.1186/s12984-022-01034-2.
6
Baseline Predictors of Response to Repetitive Task Practice in Chronic Stroke.
Neurorehabil Neural Repair. 2022 Jul;36(7):426-436. doi: 10.1177/15459683221095171. Epub 2022 May 26.
7
Ankle Exoskeleton Assistance Increases Six-Minute Walk Test Performance in Cerebral Palsy.
IEEE Open J Eng Med Biol. 2021 Dec 15;2:320-323. doi: 10.1109/OJEMB.2021.3135826. eCollection 2021.
8
Subject-Independent Continuous Locomotion Mode Classification for Robotic Hip Exoskeleton Applications.
IEEE Trans Biomed Eng. 2022 Oct;69(10):3234-3242. doi: 10.1109/TBME.2022.3165547. Epub 2022 Sep 19.
9
The role of user preference in the customized control of robotic exoskeletons.
Sci Robot. 2022 Mar 30;7(64):eabj3487. doi: 10.1126/scirobotics.abj3487.
10
Can humans perceive the metabolic benefit provided by augmentative exoskeletons?
J Neuroeng Rehabil. 2022 Feb 26;19(1):26. doi: 10.1186/s12984-022-01002-w.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验