Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, 07102, NJ, USA.
Lab of Biomechatronics and Intelligent Robotics, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, 27695, NC, USA.
J Neuroeng Rehabil. 2023 Mar 19;20(1):34. doi: 10.1186/s12984-023-01147-2.
Few studies have systematically investigated robust controllers for lower limb rehabilitation exoskeletons (LLREs) that can safely and effectively assist users with a variety of neuromuscular disorders to walk with full autonomy. One of the key challenges for developing such a robust controller is to handle different degrees of uncertain human-exoskeleton interaction forces from the patients. Consequently, conventional walking controllers either are patient-condition specific or involve tuning of many control parameters, which could behave unreliably and even fail to maintain balance.
We present a novel, deep neural network, reinforcement learning-based robust controller for a LLRE based on a decoupled offline human-exoskeleton simulation training with three independent networks, which aims to provide reliable walking assistance against various and uncertain human-exoskeleton interaction forces. The exoskeleton controller is driven by a neural network control policy that acts on a stream of the LLRE's proprioceptive signals, including joint kinematic states, and subsequently predicts real-time position control targets for the actuated joints. To handle uncertain human interaction forces, the control policy is trained intentionally with an integrated human musculoskeletal model and realistic human-exoskeleton interaction forces. Two other neural networks are connected with the control policy network to predict the interaction forces and muscle coordination. To further increase the robustness of the control policy to different human conditions, we employ domain randomization during training that includes not only randomization of exoskeleton dynamics properties but, more importantly, randomization of human muscle strength to simulate the variability of the patient's disability. Through this decoupled deep reinforcement learning framework, the trained controller of LLREs is able to provide reliable walking assistance to patients with different degrees of neuromuscular disorders without any control parameter tuning.
A universal, RL-based walking controller is trained and virtually tested on a LLRE system to verify its effectiveness and robustness in assisting users with different disabilities such as passive muscles (quadriplegic), muscle weakness, or hemiplegic conditions without any control parameter tuning. Analysis of the RMSE for joint tracking, CoP-based stability, and gait symmetry shows the effectiveness of the controller. An ablation study also demonstrates the strong robustness of the control policy under large exoskeleton dynamic property ranges and various human-exoskeleton interaction forces. The decoupled network structure allows us to isolate the LLRE control policy network for testing and sim-to-real transfer since it uses only proprioception information of the LLRE (joint sensory state) as the input. Furthermore, the controller is shown to be able to handle different patient conditions without the need for patient-specific control parameter tuning.
很少有研究系统地研究用于下肢康复外骨骼(LLRE)的稳健控制器,这些控制器可以安全有效地帮助患有各种神经肌肉疾病的患者完全自主行走。开发这种稳健控制器的关键挑战之一是处理来自患者的不同程度的不确定人机交互力。因此,传统的行走控制器要么是针对特定患者条件的,要么涉及许多控制参数的调整,这可能会导致不可靠甚至无法保持平衡。
我们提出了一种基于深度神经网络的强化学习的新型稳健控制器,用于基于离线解耦的人机模拟训练的下肢康复外骨骼,该控制器具有三个独立的网络,旨在提供可靠的行走辅助,以应对各种不确定的人机交互力。外骨骼控制器由神经网络控制策略驱动,该策略作用于下肢康复外骨骼的 proprioceptive 信号流,包括关节运动状态,并随后预测致动关节的实时位置控制目标。为了处理不确定的人机交互力,控制策略是通过集成人体肌肉骨骼模型和现实的人机交互力进行有针对性训练的。另外两个神经网络与控制策略网络相连,用于预测交互力和肌肉协调。为了进一步提高控制策略对不同人体条件的鲁棒性,我们在训练期间采用了域随机化,不仅包括外骨骼动力学特性的随机化,更重要的是,包括肌肉力量的随机化,以模拟患者残疾的可变性。通过这种解耦的深度强化学习框架,训练有素的下肢康复外骨骼控制器能够为患有不同神经肌肉疾病的患者提供可靠的行走辅助,而无需任何控制参数调整。
在下肢康复外骨骼系统上训练和虚拟测试了一种通用的基于 RL 的行走控制器,以验证其在协助具有不同残疾(如四肢瘫痪、肌肉无力或偏瘫)的用户时的有效性和鲁棒性,而无需任何控制参数调整。对关节跟踪、基于 CoP 的稳定性和步态对称性的 RMSE 分析表明了控制器的有效性。一项消融研究还证明了控制策略在较大的外骨骼动力学特性范围和各种人机交互力下的强大鲁棒性。解耦的网络结构允许我们隔离下肢康复外骨骼控制策略网络进行测试和模拟到真实的转移,因为它仅使用下肢康复外骨骼的本体感受信息(关节感觉状态)作为输入。此外,该控制器还能够在无需特定患者控制参数调整的情况下处理不同的患者条件。