Suppr超能文献

优化干预策略以减轻 COVID-19 大流行的影响。

Optimal intervention strategies to mitigate the COVID-19 pandemic effects.

机构信息

Department of Electrical and Computer Engineering, KIOS Research and Innovation Center of Excellence, University of Cyprus, Nicosia, Cyprus.

Engineering and Technology Institute, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.

出版信息

Sci Rep. 2022 Apr 12;12(1):6124. doi: 10.1038/s41598-022-09857-8.

Abstract

Governments across the world are currently facing the task of selecting suitable intervention strategies to cope with the effects of the COVID-19 pandemic. This is a highly challenging task, since harsh measures may result in economic collapse while a relaxed strategy might lead to a high death toll. Motivated by this, we consider the problem of forming intervention strategies to mitigate the impact of the COVID-19 pandemic that optimize the trade-off between the number of deceases and the socio-economic costs. We demonstrate that the healthcare capacity and the testing rate highly affect the optimal intervention strategies. Moreover, we propose an approach that enables practical strategies, with a small number of policies and policy changes, that are close to optimal. In particular, we provide tools to decide which policies should be implemented and when should a government change to a different policy. Finally, we consider how the presented results are affected by uncertainty in the initial reproduction number and infection fatality rate and demonstrate that parametric uncertainty has a more substantial effect when stricter strategies are adopted.

摘要

目前,各国政府面临着选择合适干预策略以应对 COVID-19 大流行影响的任务。这是一项极具挑战性的任务,因为严厉的措施可能导致经济崩溃,而宽松的策略可能导致高死亡率。受此启发,我们考虑制定干预策略以减轻 COVID-19 大流行影响的问题,使死亡率和社会经济成本之间的权衡达到最优。我们证明了医疗保健能力和检测率对最优干预策略有很大影响。此外,我们提出了一种方法,使具有少量政策和政策变化的实用策略接近最优。具体来说,我们提供了工具来决定应该实施哪些政策,以及政府何时应该改变到不同的政策。最后,我们考虑了初始繁殖数和感染致死率的不确定性如何影响所呈现的结果,并证明了当采用更严格的策略时,参数不确定性的影响更大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b5e/9005702/f32676f4de30/41598_2022_9857_Fig1_HTML.jpg

相似文献

1
Optimal intervention strategies to mitigate the COVID-19 pandemic effects.
Sci Rep. 2022 Apr 12;12(1):6124. doi: 10.1038/s41598-022-09857-8.
2
Trade-Off between COVID-19 Pandemic Prevention and Control and Economic Stimulus.
Int J Environ Res Public Health. 2022 Oct 27;19(21):13956. doi: 10.3390/ijerph192113956.
3
Impact of government policies on the COVID-19 pandemic unraveled by mathematical modelling.
Sci Rep. 2022 Oct 10;12(1):16987. doi: 10.1038/s41598-022-21126-2.
4
PaCAR: COVID-19 Pandemic Control Decision Making via Large-Scale Agent-Based Modeling and Deep Reinforcement Learning.
Med Decis Making. 2022 Nov;42(8):1064-1077. doi: 10.1177/0272989X221107902. Epub 2022 Jul 1.
5
Using Pandemic Data to Examine the Government's Pandemic Prevention Measures and Its Support Policies for Vulnerable Groups.
Front Public Health. 2022 Apr 6;10:882872. doi: 10.3389/fpubh.2022.882872. eCollection 2022.
7
Modeling for the Stringency of Lock-Down Policies: Effects of Macroeconomic and Healthcare Variables in Response to the COVID-19 Pandemic.
Front Public Health. 2022 May 25;10:872704. doi: 10.3389/fpubh.2022.872704. eCollection 2022.
8
A control framework to optimize public health policies in the course of the COVID-19 pandemic.
Sci Rep. 2021 Jun 28;11(1):13403. doi: 10.1038/s41598-021-92636-8.
9
The 40 health systems, COVID-19 (40HS, C-19) study.
Int J Qual Health Care. 2021 Feb 20;33(1). doi: 10.1093/intqhc/mzaa113.
10
Open data for COVID-19 policy analysis and mapping.
Sci Data. 2023 Jul 27;10(1):491. doi: 10.1038/s41597-023-02398-3.

本文引用的文献

2
Post-lockdown abatement of COVID-19 by fast periodic switching.
PLoS Comput Biol. 2021 Jan 21;17(1):e1008604. doi: 10.1371/journal.pcbi.1008604. eCollection 2021 Jan.
3
Alternating quarantine for sustainable epidemic mitigation.
Nat Commun. 2021 Jan 11;12(1):220. doi: 10.1038/s41467-020-20324-8.
4
Optimal COVID-19 quarantine and testing strategies.
Nat Commun. 2021 Jan 7;12(1):356. doi: 10.1038/s41467-020-20742-8.
6
Robust and optimal predictive control of the COVID-19 outbreak.
Annu Rev Control. 2021;51:525-539. doi: 10.1016/j.arcontrol.2020.11.002. Epub 2020 Dec 23.
7
Quantifying the impact of COVID-19 control measures using a Bayesian model of physical distancing.
PLoS Comput Biol. 2020 Dec 3;16(12):e1008274. doi: 10.1371/journal.pcbi.1008274. eCollection 2020 Dec.
8
A time-varying SIRD model for the COVID-19 contagion in Italy.
Annu Rev Control. 2020;50:361-372. doi: 10.1016/j.arcontrol.2020.10.005. Epub 2020 Oct 26.
10
Tuberculosis and COVID-19: Lessons from the Past Viral Outbreaks and Possible Future Outcomes.
Can Respir J. 2020 Sep 5;2020:1401053. doi: 10.1155/2020/1401053. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验