Wang Pengfei, Zhao Juntong, Zhang Yuman, Zhu Zhongjie, Liu Liyuan, Zhao Hongwei, Yang Xianchao, Yang Xiaonan, Sun Xiaohong, He Mingxia
School of Information Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Intelligent Sensing, Zhengzhou University, Zhengzhou 450001, PR China; Henan Key Laboratory of Laser and Opto-electric Information Technology, Zhengzhou University, Zhengzhou 450001, PR China; State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, PR China.
School of Information Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
Int J Pharm. 2022 May 25;620:121759. doi: 10.1016/j.ijpharm.2022.121759. Epub 2022 Apr 20.
Cocrystal is constructed to improve physicochemical properties of active pharmaceutical ingredient and prevent polymorphism via intermolecular interactions. However, recent examples on cocrystal polymorphs display significantly different properties. Even though some analytical techniques have been used to characterize the cocrystal polymorphic system, it remains unclear how intermolecular interactions drive and stabilize the structure. In this work, we study the cocrystal polymorphs of nifedipine (NFD) and isonicotinamide (INA) using terahertz (THz) spectroscopy. Form I and form II of NFD-INA cocrystals show spectral fingerprints in THz region. Temperature-dependent THz spectra display distinguished frequency shifts of each fingerprint. Combined with solid-state density functional theory (DFT) calculations, the experimental fingerprints and their distinct responses to temperature are elucidated by specific collective vibrational modes. The vibrations of hydrogen bonding between dihydropyridine ring of NFD and INA are generally distributed below 1.5 THz, which play important roles in stabilizing cocrystal and preventing the oxidation of NFD. The rotations of methyl group in NFD are widely distributed in the range of 1.5-4.0 THz, which helps the steric recognition. The results demonstrate that THz spectroscopy is a sensitive tool to discriminate cocrystal polymorphs. It has the potential to be used as a non-invasive technique for pharmaceutical screening.
共晶是通过分子间相互作用构建的,以改善活性药物成分的物理化学性质并防止多晶型现象。然而,最近关于共晶多晶型物的例子显示出显著不同的性质。尽管已经使用了一些分析技术来表征共晶多晶型系统,但分子间相互作用如何驱动和稳定结构仍不清楚。在这项工作中,我们使用太赫兹(THz)光谱研究硝苯地平(NFD)和异烟酰胺(INA)的共晶多晶型物。NFD-INA共晶的晶型I和晶型II在太赫兹区域显示出光谱指纹。随温度变化的太赫兹光谱显示出每个指纹的明显频移。结合固态密度泛函理论(DFT)计算,通过特定的集体振动模式阐明了实验指纹及其对温度的独特响应。NFD的二氢吡啶环与INA之间的氢键振动通常分布在1.5太赫兹以下,这在稳定共晶和防止NFD氧化方面起着重要作用。NFD中甲基的旋转广泛分布在1.5-4.0太赫兹范围内,这有助于空间识别。结果表明,太赫兹光谱是区分共晶多晶型物的灵敏工具。它有潜力用作药物筛选的非侵入性技术。