Shi Lu, Duan Xiao-Hui, Zhu Li-Guo, Liu Xun, Pei Chong-Hua
State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology , Mianyang 621010, P. R. China.
Institute of Fluid Physic, China Academy of Engineering Physics , Mianyang 621900, Sichuan, P. R. China.
J Phys Chem A. 2016 Mar 3;120(8):1160-7. doi: 10.1021/acs.jpca.5b10782. Epub 2016 Feb 18.
Compared with cocrystal coformers, an explosive cocrystal has distinctive packing arrangements and complex intermolecular interactions. Identifying the spectral signatures of an explosive cocrystal and understanding the molecular low-frequency modes by means of the spectrum in the terahertz range are of great worth to the explicit mechanism of cocrystal formation. In this work, on the basis of the joint molecular dynamics (MD) simulations and solid-state density functional theory (DFT) calculations, we have investigated the terahertz (THz) absorption spectra of the CL-20/TNT cocrystal and its different directions as well as cocrystal coformers and determined the systematic and all-sided assignments of corresponding THz vibration modes. The THz spectral comparison of the cocrystal with different directions and the cocrystal coformers indicates that the CL-20/TNT cocrystal has five fresh low-frequency absorption features as unique and discernible peaks for identification, in which 0.25, 0.73, and 0.87 THz are attributed to intensive crystalline vibrations; 0.87 THz is also caused by C-H···O hydrogen-bonding bending vibrations; 1.60 and 1.85 THz features originate from C-H···O hydrogen-bond stretching vibrations. Additionally, the THz spectrum of the (001) direction of the CL-20/TNT cocrystal verifies that the molecular conformation of the CL-20 is the same as that in the β-polymorph, other than the initial conformation of raw material ε-CL-20.
与共晶共形成物相比,炸药共晶具有独特的堆积排列和复杂的分子间相互作用。识别炸药共晶的光谱特征并通过太赫兹范围内的光谱理解分子低频模式,对于明确共晶形成机制具有重要价值。在这项工作中,基于联合分子动力学(MD)模拟和固态密度泛函理论(DFT)计算,我们研究了CL-20/TNT共晶及其不同方向以及共晶共形成物的太赫兹(THz)吸收光谱,并确定了相应太赫兹振动模式的系统且全面的归属。不同方向的共晶与共晶共形成物的太赫兹光谱比较表明,CL-20/TNT共晶具有五个新的低频吸收特征,作为独特且可辨别的峰用于识别,其中0.25、0.73和0.87太赫兹归因于强烈的晶体振动;0.87太赫兹也由C-H···O氢键弯曲振动引起;1.60和1.85太赫兹特征源于C-H···O氢键拉伸振动。此外,CL-20/TNT共晶(001)方向的太赫兹光谱证实,CL-20的分子构象与β-多晶型中的相同,而非原料ε-CL-20的初始构象。