Suppr超能文献

神经胶质细胞对脊髓损伤作出反应。

The Glial Cells Respond to Spinal Cord Injury.

作者信息

Wang Ruideng, Zhou Rubing, Chen Zhengyang, Gao Shan, Zhou Fang

机构信息

Department of Orthopedics, Peking University Third Hospital, Beijing, China.

出版信息

Front Neurol. 2022 May 6;13:844497. doi: 10.3389/fneur.2022.844497. eCollection 2022.

Abstract

It is been over 100 years since glial cells were discovered by Virchow. Since then, a great deal of research was carried out to specify these further roles and properties of glial cells in central nervous system (CNS). As it is well-known that glial cells, such as astrocytes, microglia, oligodendrocytes (OLs), and oligodendrocyte progenitor cells (OPCs) play an important role in supporting and enabling the effective nervous system function in CNS. After spinal cord injury (SCI), these glial cells play different roles in SCI and repair. In this review, we will discuss in detail about the role of glial cells in the healthy CNS and how they respond to SCI.

摘要

自维尔肖发现神经胶质细胞以来,已经过去了100多年。从那时起,人们进行了大量研究,以进一步明确这些神经胶质细胞在中枢神经系统(CNS)中的作用和特性。众所周知,神经胶质细胞,如星形胶质细胞、小胶质细胞、少突胶质细胞(OLs)和少突胶质前体细胞(OPCs),在支持和实现中枢神经系统有效的神经功能方面发挥着重要作用。脊髓损伤(SCI)后,这些神经胶质细胞在脊髓损伤和修复中发挥着不同的作用。在这篇综述中,我们将详细讨论神经胶质细胞在健康中枢神经系统中的作用以及它们对脊髓损伤的反应。

相似文献

1
The Glial Cells Respond to Spinal Cord Injury.
Front Neurol. 2022 May 6;13:844497. doi: 10.3389/fneur.2022.844497. eCollection 2022.
2
Glial Cells Shape Pathology and Repair After Spinal Cord Injury.
Neurotherapeutics. 2018 Jul;15(3):554-577. doi: 10.1007/s13311-018-0630-7.
3
Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
Stem Cell Res Ther. 2021 Jan 7;12(1):36. doi: 10.1186/s13287-020-02090-y.
4
More attention on glial cells to have better recovery after spinal cord injury.
Biochem Biophys Rep. 2021 Jan 25;25:100905. doi: 10.1016/j.bbrep.2020.100905. eCollection 2021 Mar.
5
Effect of glial cells on remyelination after spinal cord injury.
Neural Regen Res. 2017 Oct;12(10):1724-1732. doi: 10.4103/1673-5374.217354.
6
The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury.
Glia. 2020 Feb;68(2):227-245. doi: 10.1002/glia.23706. Epub 2019 Aug 21.
7
The therapeutic potential of microRNAs to ameliorate spinal cord injury by regulating oligodendrocyte progenitor cells and remyelination.
Front Cell Neurosci. 2024 May 15;18:1404463. doi: 10.3389/fncel.2024.1404463. eCollection 2024.
8
Elimination of microglia in mouse spinal cord alters the retrograde CNS plasticity observed following peripheral axon injury.
Brain Res. 2019 Oct 15;1721:146328. doi: 10.1016/j.brainres.2019.146328. Epub 2019 Jul 8.
9
Microenvironmental regulation of oligodendrocyte replacement and remyelination in spinal cord injury.
J Physiol. 2016 Jul 1;594(13):3539-52. doi: 10.1113/JP270895. Epub 2016 Mar 29.
10
Myelinogenic Plasticity of Oligodendrocyte Precursor Cells following Spinal Cord Contusion Injury.
J Neurosci. 2017 Sep 6;37(36):8635-8654. doi: 10.1523/JNEUROSCI.2409-16.2017. Epub 2017 Jul 31.

引用本文的文献

2
Microglial landscape and signaling in spinal cord injury.
Spinal Cord. 2025 Jul 7. doi: 10.1038/s41393-025-01103-y.
3
Opiorphin and neuropathic pain: a promising treatment approach?
Inflammopharmacology. 2025 Jul 3. doi: 10.1007/s10787-025-01827-6.
4
Astrocyte-mediated inflammatory responses in traumatic brain injury: mechanisms and potential interventions.
Front Immunol. 2025 May 8;16:1584577. doi: 10.3389/fimmu.2025.1584577. eCollection 2025.
6
BDNF-GABA signaling in astrocytes: enhancing neural repair after SCI through MSC therapies.
Spinal Cord. 2025 May;63(5):263-269. doi: 10.1038/s41393-025-01077-x. Epub 2025 Apr 14.
7
A novel reconstruction model for thoracic spinal cord injury in swine.
PLoS One. 2024 Sep 26;19(9):e0308637. doi: 10.1371/journal.pone.0308637. eCollection 2024.
8
Astrocytes originated from neural stem cells drive the regenerative remodeling of pathologic CSPGs in spinal cord injury.
Stem Cell Reports. 2024 Oct 8;19(10):1451-1473. doi: 10.1016/j.stemcr.2024.08.007. Epub 2024 Sep 19.
9
Astrocyte-Neuron Interactions in Spinal Cord Injury.
Adv Neurobiol. 2024;39:213-231. doi: 10.1007/978-3-031-64839-7_9.
10
Applications of Stem Cell-Derived Extracellular Vesicles in Nerve Regeneration.
Int J Mol Sci. 2024 May 28;25(11):5863. doi: 10.3390/ijms25115863.

本文引用的文献

1
Single-cell analysis of the cellular heterogeneity and interactions in the injured mouse spinal cord.
J Exp Med. 2021 Aug 2;218(8). doi: 10.1084/jem.20210040. Epub 2021 Jun 16.
4
Reactive Astrogliosis: Implications in Spinal Cord Injury Progression and Therapy.
Oxid Med Cell Longev. 2020 Aug 19;2020:9494352. doi: 10.1155/2020/9494352. eCollection 2020.
5
GDNF, A Neuron-Derived Factor Upregulated in Glial Cells during Disease.
J Clin Med. 2020 Feb 7;9(2):456. doi: 10.3390/jcm9020456.
6
The Neuroprotective Role of Reactive Astrocytes after Central Nervous System Injury.
J Neurotrauma. 2020 Mar 1;37(5):681-691. doi: 10.1089/neu.2019.6938.
7
Myelin in the Central Nervous System: Structure, Function, and Pathology.
Physiol Rev. 2019 Jul 1;99(3):1381-1431. doi: 10.1152/physrev.00031.2018.
8
A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment.
Nat Neurosci. 2019 Jun;22(6):1021-1035. doi: 10.1038/s41593-019-0393-4. Epub 2019 May 6.
10
Injury type-dependent differentiation of NG2 glia into heterogeneous astrocytes.
Exp Neurol. 2018 Oct;308:72-79. doi: 10.1016/j.expneurol.2018.07.001. Epub 2018 Jul 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验