Suppr超能文献

使用 dCas9 从未改变的静止和流动血浆中捕获 ctDNA。

Capturing ctDNA from Unaltered Stationary and Flowing Plasma with dCas9.

机构信息

Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States.

出版信息

ACS Appl Mater Interfaces. 2022 Jun 1;14(21):24113-24121. doi: 10.1021/acsami.2c03186. Epub 2022 May 23.

Abstract

Many studies have established that blood-based liquid biopsies can be used to detect cancer in its early stages. However, the limiting factor for early cancer detection is the volume of blood required to capture the small amount of circulating tumor DNA (ctDNA). An apheresis machine is a device that can draw whole blood, separate the blood components, and infuse the blood components back into the individual. This device provides the opportunity to screen large volumes of plasma without extracting it from the body. However, current DNA capture technologies require the plasma to be altered before the ctDNA can be captured. Our goal was to develop the first technology that can capture ctDNA from flowing unaltered plasma. To simulate cancer patient plasma, we spiked T1799A (BRAF) DNA into plasma from healthy individuals. We used catalytically dead Cas9 (dCas9), guide RNA, and allele-specific quantitative polymerase chain reaction (qPCR) to capture and measure the number of captured BRAF DNA copies. We found that dCas9 captured BRAF alleles with equal efficiency at room temperature (25 °C) and body temperature (37 °C). Next, we showed that, in stationary unaltered plasma, dCas9 was as efficient in capturing BRAF as a commercial cell-free DNA (cfDNA) capture kit. However, in contrast to the cfDNA capture kit, dCas9 enriched BRAF by 1.8-3.3-fold. We then characterized the dCas9 capture system in laminar and turbulent flowing plasma. We showed that the capture rate using turbulent flow was greater than that in laminar flow and stationary plasma. With turbulent flow, the number of captured BRAF copies doubles with time (slope = -1.035 Ct) and is highly linear ( = 0.874). While we showed that the dCas9 capture system can capture ctDNA from unaltered flowing plasma, further optimization and validation of this technology is required before its clinical utility can be determined.

摘要

许多研究已经证实,基于血液的液体活检可用于检测癌症的早期阶段。然而,早期癌症检测的限制因素是捕获少量循环肿瘤 DNA (ctDNA) 所需的血液量。一台血液分离机是一种可以抽取全血、分离血液成分并将血液成分回输给个体的设备。该设备提供了筛选大量血浆而无需从体内提取的机会。然而,目前的 DNA 捕获技术要求在捕获 ctDNA 之前对血浆进行改变。我们的目标是开发第一种能够从未改变的流动血浆中捕获 ctDNA 的技术。为了模拟癌症患者的血浆,我们将 T1799A (BRAF) DNA 掺入到来自健康个体的血浆中。我们使用催化失活的 Cas9 (dCas9)、向导 RNA 和等位基因特异性定量聚合酶链反应 (qPCR) 来捕获和测量捕获的 BRAF DNA 拷贝数。我们发现 dCas9 在室温 (25°C) 和体温 (37°C) 下以相同的效率捕获 BRAF 等位基因。接下来,我们表明,在静止未改变的血浆中,dCas9 在捕获 BRAF 方面的效率与商用游离 DNA (cfDNA) 捕获试剂盒相当。然而,与 cfDNA 捕获试剂盒不同的是,dCas9 将 BRAF 富集了 1.8-3.3 倍。然后,我们在层流和湍流流动血浆中对 dCas9 捕获系统进行了表征。我们表明,使用湍流时的捕获速率大于层流和静止血浆中的捕获速率。使用湍流时,随时间捕获的 BRAF 拷贝数翻番(斜率=-1.035 Ct)且高度线性(=0.874)。虽然我们表明 dCas9 捕获系统可以从未改变的流动血浆中捕获 ctDNA,但在确定其临床应用之前,需要对该技术进行进一步优化和验证。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验