Suppr超能文献

基于国际疾病分类第十版临床修订版损伤分类的国际疾病分类方案衍生的损伤严重度评分与创伤质量改进计划衍生的损伤严重度评分相比表现如何?

How does Injury Severity Score derived from International Classification of Diseases Programs for Injury Categorization using International Classification of Diseases, Tenth Revision, Clinical Modification codes perform compared with Injury Severity Score derived from Trauma Quality Improvement Program?

机构信息

From the Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.

出版信息

J Trauma Acute Care Surg. 2023 Jan 1;94(1):141-147. doi: 10.1097/TA.0000000000003656. Epub 2022 May 30.

Abstract

BACKGROUND

Injury Severity Score (ISS) is a measurement of injury severity based on the Abbreviated Injury Scale. Because of the difficulty and expense of Abbreviated Injury Scale coding, there have been recent efforts in mapping ISS from administrative International Classification of Diseases ( ICD ) codes instead. Specifically, the open source and freely available International Classification of Diseases Programs for Injury Categorization (ICDPIC) in R (Foundation for Statistical Computing, Vienna, Austria) converts International Classification of Diseases, Ninth Revision, codes to ISS. This study aims to compare ICDPIC calculations versus manually derived Trauma Quality Improvement Program (TQIP) calculations for International Classification of Diseases, Tenth Revision ( ICD-10 ), codes. Moderate concordance was chosen as the hypothetical relationship because of previous work by both Fleischman et al. ( J Trauma Nurs. 2017;24(1):4-14) who found moderate to substantial concordance between ICDPIC and ISS and Di Bartolomeo et al. ( Scand J Trauma Resusc Emerg Med. 2010;18(1):17) who found none to slight concordance. Given these very different findings, we thought it reasonable to predict moderate concordance with the use of more detailed ICD-10 codes.

METHODS

This was an observational cohort study of 1,040,728 encounters in the TQIP registry for the year 2018. International Classification of Diseases Programs for Injury Categorization in R was used to derive ISS from the ICD-10 codes in the registry. The resulting scores were compared with the manually derived ISS in TQIP.

RESULTS

The median difference between ISS calculated by ICDPIC-2021 using ICD-10, Clinical Modification (ISS-ICDPIC), and manually derived ISS was -3 (95% confidence interval, -5 to 0), while the mean difference was -2.09 (95% confidence interval, -2.10 to -2.07). There was substantial concordance between ISS-ICDPIC and manually derived ISS ( κ = 0.66). The ISS-ICDPIC was a better predictor of mortality (area under the curve, 0.853 vs. 0.836) but a worse predictor of intensive care unit admission (area under the curve, 0.741 vs. 0.757) and hospital stay ≥10 days (AUC, 0.701 vs. 0.743). The ICDPIC has substantial concordance with TQIP for the firearm ( κ = 0.69), motor vehicle trauma ( κ = 0.71), and pedestrian ( κ = 0.73) injury mechanisms.

CONCLUSION

When TQIP data are unavailable, ICDPIC remains a valid way to calculate ISS after transition to ICD-10 codes. The ISS-ICDPIC performs well in predicting a number of outcomes of interest but is best served as a predictor of mortality.

LEVEL OF EVIDENCE

Prognostic and Epidemiological; Level III.

摘要

背景

损伤严重度评分(ISS)是一种基于简明损伤定级标准的损伤严重程度的测量方法。由于简明损伤定级标准编码的难度和费用,最近已经在尝试从国际疾病分类(ICD)编码中映射 ISS。具体来说,开源且免费的 ICD 伤害分类程序(ICDPIC)在 R 中(奥地利维也纳统计计算基金会)将国际疾病分类,第九修订版(ICD-9)的代码转换为 ISS。本研究旨在比较 ICDPIC 计算与手动推导的创伤质量改进计划(TQIP)对 ICD-10 代码的计算。中度一致性被选为假设关系,因为 Fleischman 等人的先前工作(J Trauma Nurs. 2017;24(1):4-14)发现 ICDPIC 和 ISS 之间存在中度到高度一致性,Di Bartolomeo 等人(Scand J Trauma Resusc Emerg Med. 2010;18(1):17)发现两者之间无一致性或轻度一致性。鉴于这些非常不同的发现,我们认为使用更详细的 ICD-10 代码预测中度一致性是合理的。

方法

这是一项对 2018 年 TQIP 登记处的 1040728 例患者的观察性队列研究。使用 ICD 伤害分类程序(R 中的 ICDPIC)从登记处的 ICD-10 代码中推导出 ISS。将得到的分数与 TQIP 中手动推导的 ISS 进行比较。

结果

使用 ICD-10 临床修订版(ISS-ICDPIC)通过 ICDPIC-2021 计算的 ISS 与手动推导的 ISS 之间的中位数差异为-3(95%置信区间,-5 至 0),而平均差异为-2.09(95%置信区间,-2.10 至-2.07)。ISS-ICDPIC 与手动推导的 ISS 具有高度一致性(κ=0.66)。ISS-ICDPIC 是死亡率更好的预测因子(曲线下面积,0.853 与 0.836),但 ICU 入院(曲线下面积,0.741 与 0.757)和住院时间≥10 天(AUC,0.701 与 0.743)的预测因子较差。ICDPIC 与 TQIP 在火器(κ=0.69)、机动车辆创伤(κ=0.71)和行人(κ=0.73)损伤机制方面具有高度一致性。

结论

当 TQIP 数据不可用时,ICDPIC 仍然是在过渡到 ICD-10 代码后计算 ISS 的有效方法。ISS-ICDPIC 在预测许多感兴趣的结果方面表现良好,但最适合作为死亡率的预测因子。

证据水平

预后和流行病学;III 级。

相似文献

2
Validation of ICDPIC software injury severity scores using a large regional trauma registry.
Inj Prev. 2015 Oct;21(5):325-30. doi: 10.1136/injuryprev-2014-041524. Epub 2015 May 18.
3
Open-access programs for injury categorization using ICD-9 or ICD-10.
Inj Epidemiol. 2018 Apr 9;5(1):11. doi: 10.1186/s40621-018-0149-8.
4
Validating the Use of ICD-9 Code Mapping to Generate Injury Severity Scores.
J Trauma Nurs. 2017 Jan/Feb;24(1):4-14. doi: 10.1097/JTN.0000000000000255.
5
ISS mapped from ICD-9-CM by a novel freeware versus traditional coding: a comparative study.
Scand J Trauma Resusc Emerg Med. 2010 Mar 31;18:17. doi: 10.1186/1757-7241-18-17.
6
Predicting work-related disability and medical cost outcomes: a comparison of injury severity scoring methods.
Injury. 2014 Jan;45(1):16-22. doi: 10.1016/j.injury.2012.12.024. Epub 2013 Jan 21.
7
Transforming the German ICD-10 (ICD-10-GM) into Injury Severity Score (ISS)-Introducing a new method for automated re-coding.
PLoS One. 2021 Sep 10;16(9):e0257183. doi: 10.1371/journal.pone.0257183. eCollection 2021.

引用本文的文献

3
Short-term outcomes of prehospital opioid pain management for older adults with fall-related injury.
J Am Geriatr Soc. 2024 May;72(5):1384-1395. doi: 10.1111/jgs.18830. Epub 2024 Feb 28.
5
Detecting Variation in Clinical Practice Patterns for Geriatric Trauma Care Using Social Network Analysis.
Ann Surg. 2024 Feb 1;279(2):353-360. doi: 10.1097/SLA.0000000000005983. Epub 2023 Jul 3.
6
Beyond In-hospital Mortality: Use of Postdischarge Quality-Metrics Provides a More Complete Picture of Older Adult Trauma Care.
Ann Surg. 2023 Aug 1;278(2):e314-e330. doi: 10.1097/SLA.0000000000005707. Epub 2022 Sep 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验