Suppr超能文献

淋巴管作为信号枢纽调节肠道干细胞活性。

Lymphatics act as a signaling hub to regulate intestinal stem cell activity.

机构信息

Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065, USA; Jill Roberts Center for Inflammatory Bowel Disease, Department of Gastroenterology and Hepatology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.

Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.

出版信息

Cell Stem Cell. 2022 Jul 7;29(7):1067-1082.e18. doi: 10.1016/j.stem.2022.05.007. Epub 2022 Jun 20.

Abstract

Barrier epithelia depend upon resident stem cells for homeostasis, defense, and repair. Epithelial stem cells of small and large intestines (ISCs) respond to their local microenvironments (niches) to fulfill a continuous demand for tissue turnover. The complexity of these niches and underlying communication pathways are not fully known. Here, we report a lymphatic network at the intestinal crypt base that intimately associates with ISCs. Employing in vivo loss of function and lymphatic:organoid cocultures, we show that crypt lymphatics maintain ISCs and inhibit their precocious differentiation. Pairing single-cell and spatial transcriptomics, we apply BayesPrism to deconvolve expression within spatial features and develop SpaceFold to robustly map the niche at high resolution, exposing lymphatics as a central signaling hub for the crypt in general and ISCs in particular. We identify WNT-signaling factors (WNT2, R-SPONDIN-3) and a hitherto unappreciated extracellular matrix protein, REELIN, as crypt lymphatic signals that directly govern the regenerative potential of ISCs.

摘要

屏障上皮依赖于常驻干细胞来维持其体内平衡、防御和修复。小肠和大肠的上皮干细胞(ISCs)响应其局部微环境(龛),以满足组织更新的持续需求。这些龛的复杂性和潜在的通讯途径尚未完全了解。在这里,我们报告了在肠隐窝基底处存在一个与 ISCs 密切相关的淋巴网络。通过体内功能丧失和淋巴:类器官共培养实验,我们表明隐窝中的淋巴管维持 ISCs 并抑制其过早分化。通过单细胞和空间转录组学,我们应用贝叶斯分析来解卷积空间特征内的表达,并开发 SpaceFold 来以高分辨率稳健地绘制龛位,揭示淋巴管是隐窝的核心信号枢纽,特别是对 ISCs 而言。我们发现 WNT 信号因子(WNT2、R-SPONDIN-3)和一个以前未被重视的细胞外基质蛋白 REELIN,作为直接控制 ISCs 再生潜力的隐窝淋巴管信号。

相似文献

1
Lymphatics act as a signaling hub to regulate intestinal stem cell activity.
Cell Stem Cell. 2022 Jul 7;29(7):1067-1082.e18. doi: 10.1016/j.stem.2022.05.007. Epub 2022 Jun 20.
2
Lymphatics and fibroblasts support intestinal stem cells in homeostasis and injury.
Cell Stem Cell. 2022 Aug 4;29(8):1246-1261.e6. doi: 10.1016/j.stem.2022.06.013.
3
pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):E3173-E3181. doi: 10.1073/pnas.1713510115. Epub 2018 Mar 20.
4
Stroma provides an intestinal stem cell niche in the absence of epithelial Wnts.
Development. 2014 Jun;141(11):2206-15. doi: 10.1242/dev.104976.
5
Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury.
Cell Stem Cell. 2022 Aug 4;29(8):1262-1272.e5. doi: 10.1016/j.stem.2022.07.007.
6
Non-equivalence of Wnt and R-spondin ligands during Lgr5 intestinal stem-cell self-renewal.
Nature. 2017 May 11;545(7653):238-242. doi: 10.1038/nature22313. Epub 2017 May 3.
7
Leveraging Temporal Wnt Signal for Efficient Differentiation of Intestinal Stem Cells in an Organoid Model.
Stem Cells Dev. 2024 Jan;33(1-2):11-26. doi: 10.1089/scd.2023.0186. Epub 2023 Nov 20.
8
MET Signaling Mediates Intestinal Crypt-Villus Development, Regeneration, and Adenoma Formation and Is Promoted by Stem Cell CD44 Isoforms.
Gastroenterology. 2017 Oct;153(4):1040-1053.e4. doi: 10.1053/j.gastro.2017.07.008. Epub 2017 Jul 14.
9
Wnt signaling suppresses MAPK-driven proliferation of intestinal stem cells.
J Clin Invest. 2018 Aug 31;128(9):3806-3812. doi: 10.1172/JCI99325. Epub 2018 Jul 30.

引用本文的文献

1
Crosstalk between the circadian clock, intestinal stem cell niche, and epithelial cell fate decision.
Genes Dis. 2025 Apr 18;12(6):101650. doi: 10.1016/j.gendis.2025.101650. eCollection 2025 Nov.
5
Lymphatic-immune interactions in the musculoskeletal system.
Front Immunol. 2025 May 27;16:1578847. doi: 10.3389/fimmu.2025.1578847. eCollection 2025.
6
Latest Advanced Techniques for Improving Intestinal Organoids Limitations.
Stem Cell Rev Rep. 2025 May 19. doi: 10.1007/s12015-025-10894-9.
8
Intestinal stem cells in intestinal homeostasis and colorectal tumorigenesis.
Life Med. 2024 Dec 25;3(5):lnae042. doi: 10.1093/lifemedi/lnae042. eCollection 2024 Oct.
10

本文引用的文献

2
DestVI identifies continuums of cell types in spatial transcriptomics data.
Nat Biotechnol. 2022 Sep;40(9):1360-1369. doi: 10.1038/s41587-022-01272-8. Epub 2022 Apr 21.
3
The spatial transcriptomic landscape of the healing mouse intestine following damage.
Nat Commun. 2022 Feb 11;13(1):828. doi: 10.1038/s41467-022-28497-0.
4
Cell2location maps fine-grained cell types in spatial transcriptomics.
Nat Biotechnol. 2022 May;40(5):661-671. doi: 10.1038/s41587-021-01139-4. Epub 2022 Jan 13.
5
Enteric glial cell heterogeneity regulates intestinal stem cell niches.
Cell Stem Cell. 2022 Jan 6;29(1):86-100.e6. doi: 10.1016/j.stem.2021.10.004. Epub 2021 Nov 1.
6
Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram.
Nat Methods. 2021 Nov;18(11):1352-1362. doi: 10.1038/s41592-021-01264-7. Epub 2021 Oct 28.
7
Differential abundance testing on single-cell data using k-nearest neighbor graphs.
Nat Biotechnol. 2022 Feb;40(2):245-253. doi: 10.1038/s41587-021-01033-z. Epub 2021 Sep 30.
8
Cells of the human intestinal tract mapped across space and time.
Nature. 2021 Sep;597(7875):250-255. doi: 10.1038/s41586-021-03852-1. Epub 2021 Sep 8.
9
Niches that regulate stem cells and hematopoiesis in adult bone marrow.
Dev Cell. 2021 Jul 12;56(13):1848-1860. doi: 10.1016/j.devcel.2021.05.018. Epub 2021 Jun 18.
10
Robust decomposition of cell type mixtures in spatial transcriptomics.
Nat Biotechnol. 2022 Apr;40(4):517-526. doi: 10.1038/s41587-021-00830-w. Epub 2021 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验