Hao Ziyu, Li Huanhuan, Ouyang Lisheng, Sun Fang, Wen Xiaotong, Wang Xiang
Department of Psychology, Renmin University of China, Beijing, China.
Medical Institute of Psychology, Second Xiangya Hospital of Central South University, Changsha, China.
Psychophysiology. 2023 Jan;60(1):e14136. doi: 10.1111/psyp.14136. Epub 2022 Jun 29.
Pain avoidance can effectively classify suicide attempters from non-attempters among patients with major depressive disorder (MDD). However, the neural circuits underlying pain processing in suicide attempters have not been described comprehensively. In Study 1, we recruited MDD patients with a history of suicide attempts (MDD-SA), and those without (MDD-NSA) to examine the patterns of psychological pain using the latent profile analysis. Further, in Study 2, participants including the MDD-SA, MDD-NSA, and healthy controls underwent resting-state functional magnetic resonance imaging. We used machine learning that included features of gray matter volume (GMV), the functional connectivity (FC) brain patterns of the region of interest, and behavioral data to identify suicide attempters. The results identified three latent classes of psychological pain in MDD patients: the low pain class (18.9%), the painful feeling class (37.2%), and the pain avoidance class (43.9%). Furthermore, the proportion of suicide attempters with high pain avoidance was the highest. The accuracy of multimodality classifiers (63%-92%) was significantly higher than that of brain-only classifiers (56%-85%) and behavior-only classifiers (64%-73%). Pain avoidance ranked first in the optimal feature set of the suicide attempt classification model. The crucial brain imaging features were FC between the left amygdala and right insula, right orbitofrontal and left thalamus, left anterior cingulate cortex and left insula, right orbitofrontal, amygdala, and the GMV of right thalamus. Additionally, the optimal feature set, including pain avoidance and crucial brain patterns of psychological pain neural circuits, was provided for the identification of suicide attempters.
在重度抑郁症(MDD)患者中,避免疼痛可有效区分自杀未遂者和未尝试自杀者。然而,自杀未遂者疼痛处理的神经回路尚未得到全面描述。在研究1中,我们招募了有自杀未遂史的MDD患者(MDD-SA)和无自杀未遂史的MDD患者(MDD-NSA),通过潜在类别分析来检查心理疼痛模式。此外,在研究2中,包括MDD-SA、MDD-NSA和健康对照在内的参与者接受了静息态功能磁共振成像。我们使用机器学习,包括灰质体积(GMV)特征、感兴趣区域的功能连接(FC)脑模式和行为数据来识别自杀未遂者。结果在MDD患者中确定了三种潜在的心理疼痛类别:低疼痛类别(18.9%)、疼痛感觉类别(37.2%)和疼痛回避类别(43.9%)。此外,高疼痛回避的自杀未遂者比例最高。多模态分类器的准确率(63%-92%)显著高于仅基于大脑的分类器(56%-85%)和仅基于行为的分类器(64%-73%)。在自杀未遂分类模型的最佳特征集中,疼痛回避排名第一。关键的脑成像特征是左杏仁核与右岛叶、右眶额皮质与左丘脑、左前扣带回皮质与左岛叶、右眶额皮质、杏仁核之间的FC以及右丘脑的GMV。此外,还提供了包括疼痛回避和心理疼痛神经回路关键脑模式的最佳特征集,用于识别自杀未遂者。