Suppr超能文献

硫化镉量子点作为俄歇过程促进的有机化学的有效光还原剂。

CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes.

机构信息

Department of Chemistry, UW─Madison, Madison, Wisconsin 53706, United States.

Department of Chemistry, University of Rochester, Rochester, New York 14627, United States.

出版信息

J Am Chem Soc. 2022 Jul 13;144(27):12229-12246. doi: 10.1021/jacs.2c03235. Epub 2022 Jun 30.

Abstract

Strong reducing agents (<-2.0 V vs saturated calomel electrode (SCE)) enable a wide array of useful organic chemistry, but suffer from a variety of limitations. Stoichiometric metallic reductants such as alkali metals and SmI are commonly employed for these reactions; however, considerations including expense, ease of use, safety, and waste generation limit the practicality of these methods. Recent approaches utilizing energy from multiple photons or electron-primed photoredox catalysis have accessed reduction potentials equivalent to Li and shown how this enables selective transformations of aryl chlorides via aryl radicals. However, in some cases, low stability of catalytic intermediates can limit turnover numbers. Herein, we report the ability of CdS nanocrystal quantum dots (QDs) to function as strong photoreductants and present evidence that a highly reducing electron is generated from two consecutive photoexcitations of CdS QDs with intermediate reductive quenching. Mechanistic experiments suggest that Auger recombination, a photophysical phenomenon known to occur in photoexcited anionic QDs, generates transient thermally excited electrons to enable the observed reductions. Using blue light-emitting diodes (LEDs) and sacrificial amine reductants, aryl chlorides and phosphate esters with reduction potentials up to -3.4 V vs SCE are photoreductively cleaved to afford hydrodefunctionalized or functionalized products. In contrast to small-molecule catalysts, QDs are stable under these conditions and turnover numbers up to 47 500 have been achieved. These conditions can also effect other challenging reductions, such as tosylate protecting group removal from amines, debenzylation of benzyl-protected alcohols, and reductive ring opening of cyclopropane carboxylic acid derivatives.

摘要

强还原剂(<-2.0 V 对饱和甘汞电极 (SCE))能够实现广泛的有用有机化学反应,但存在多种限制。碱金属和 SmI 等化学计量金属还原剂通常用于这些反应;然而,考虑到成本、易用性、安全性和废物生成等因素,这些方法的实用性受到限制。最近采用多光子能量或电子引发光氧化还原催化的方法已经达到了与 Li 相当的还原电位,并展示了如何通过芳基自由基实现芳基氯化物的选择性转化。然而,在某些情况下,催化中间体的低稳定性可能会限制转化数。在此,我们报告了 CdS 纳米晶量子点 (QD) 作为强光还原剂的能力,并提供了证据表明,CdS QD 的两次连续光激发伴随着中间还原猝灭,会产生一个还原能力很强的电子。机理实验表明,俄歇复合,一种已知在光激发阴离子 QD 中发生的光物理现象,会产生瞬态热激发电子,从而实现观察到的还原。使用蓝光发光二极管 (LED) 和牺牲胺还原剂,还原电位高达-3.4 V 对 SCE 的芳基氯化物和磷酸酯可以被光还原裂解,得到氢去功能化或官能化产物。与小分子催化剂不同,QD 在这些条件下稳定,达到了 47500 的转化数。这些条件还可以实现其他具有挑战性的还原反应,如从胺中脱除对甲苯磺酰基保护基、脱除苄基保护醇的苄基、以及环丙烷羧酸衍生物的还原开环。

相似文献

1
CdS Quantum Dots as Potent Photoreductants for Organic Chemistry Enabled by Auger Processes.
J Am Chem Soc. 2022 Jul 13;144(27):12229-12246. doi: 10.1021/jacs.2c03235. Epub 2022 Jun 30.
2
Low-Toxicity ZnSe/ZnS Quantum Dots as Potent Photoreductants and Triplet Sensitizers for Organic Transformations.
Angew Chem Int Ed Engl. 2022 Dec 5;61(49):e202213065. doi: 10.1002/anie.202213065. Epub 2022 Nov 10.
3
Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp)-H Cross-Coupling.
Acc Chem Res. 2021 Feb 16;54(4):988-1000. doi: 10.1021/acs.accounts.0c00694. Epub 2021 Jan 29.
4
Stable Meisenheimer Complexes as Powerful Photoreductants Readily Obtained from Aza-Hetero Aromatic Compounds.
Angew Chem Int Ed Engl. 2024 Oct 24;63(44):e202411074. doi: 10.1002/anie.202411074. Epub 2024 Sep 17.
6
Lanthanide Photocatalysis.
Acc Chem Res. 2018 Nov 20;51(11):2926-2936. doi: 10.1021/acs.accounts.8b00336. Epub 2018 Oct 18.
7
Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination.
ACS Nano. 2013 Apr 23;7(4):3411-9. doi: 10.1021/nn4002825. Epub 2013 Apr 12.
8
Visible Light Mediated Photoredox Catalytic Arylation Reactions.
Acc Chem Res. 2016 Aug 16;49(8):1566-77. doi: 10.1021/acs.accounts.6b00229. Epub 2016 Aug 2.
9
Potent Reductants via Electron-Primed Photoredox Catalysis: Unlocking Aryl Chlorides for Radical Coupling.
J Am Chem Soc. 2020 Feb 5;142(5):2093-2099. doi: 10.1021/jacs.9b12328. Epub 2020 Jan 17.
10
When Light Meets Nitrogen-Centered Radicals: From Reagents to Catalysts.
Acc Chem Res. 2020 May 19;53(5):1066-1083. doi: 10.1021/acs.accounts.0c00090. Epub 2020 Apr 14.

引用本文的文献

1
Core-Shell Engineering of One-Dimensional Cadmium Sulfide for Solar Energy Conversion.
Nanomaterials (Basel). 2025 Jun 27;15(13):1000. doi: 10.3390/nano15131000.
3
Device Applications Enabled by Bandgap Engineering Through Quantum Dot Tuning: A Review.
Materials (Basel). 2024 Oct 31;17(21):5335. doi: 10.3390/ma17215335.
5
Emerging Opportunities of Colloidal Quantum Dots for Photocatalytic Organic Transformations.
Adv Mater. 2025 Jun;37(23):e2409096. doi: 10.1002/adma.202409096. Epub 2024 Sep 28.
8
CdS Quantum Dot Gels as a Direct Hydrogen Atom Transfer Photocatalyst for C-H Activation.
Angew Chem Int Ed Engl. 2024 Sep 9;63(37):e202403186. doi: 10.1002/anie.202403186. Epub 2024 Aug 5.
9
Interfacial Charge Transfer Regulates Photoredox Catalysis.
ACS Cent Sci. 2024 Feb 26;10(3):529-542. doi: 10.1021/acscentsci.3c01561. eCollection 2024 Mar 27.
10
1,4-Dihydropyridine Anions as Potent Single-Electron Photoreductants.
Org Lett. 2024 Mar 8;26(9):1975-1979. doi: 10.1021/acs.orglett.4c00513. Epub 2024 Feb 27.

本文引用的文献

1
Effect of Ligands and Solvents on the Stability of Electron Charged CdSe Colloidal Quantum Dots.
J Phys Chem C Nanomater Interfaces. 2021 Nov 4;125(43):23968-23975. doi: 10.1021/acs.jpcc.1c07464. Epub 2021 Oct 26.
2
Photons or Electrons? A Critical Comparison of Electrochemistry and Photoredox Catalysis for Organic Synthesis.
Chem Rev. 2022 Jan 26;122(2):2487-2649. doi: 10.1021/acs.chemrev.1c00384. Epub 2021 Nov 9.
3
Nanomaterial catalysts for organic photoredox catalysis-mechanistic perspective.
Nanoscale. 2021 Nov 11;13(43):18044-18053. doi: 10.1039/d1nr05474k.
4
Water Effects on Colloidal Semiconductor Nanocrystals: Correlation of Photophysics and Photochemistry.
J Am Chem Soc. 2021 Nov 10;143(44):18721-18732. doi: 10.1021/jacs.1c09363. Epub 2021 Oct 27.
5
Direct, Site-Selective and Redox-Neutral α-C-H Bond Functionalization of Tetrahydrofurans via Quantum Dots Photocatalysis.
Angew Chem Int Ed Engl. 2021 Dec 20;60(52):27201-27205. doi: 10.1002/anie.202109849. Epub 2021 Nov 10.
6
Visible-Light-Driven Oxidative Cleavage of Alkenes Using Water-Soluble CdSe Quantum Dots.
ChemSusChem. 2021 Nov 19;14(22):4985-4992. doi: 10.1002/cssc.202101504. Epub 2021 Oct 13.
7
How Radical Are "Radical" Photocatalysts? A Closed-Shell Meisenheimer Complex Is Identified as a Super-Reducing Photoreagent.
J Am Chem Soc. 2021 Sep 8;143(35):14352-14359. doi: 10.1021/jacs.1c06844. Epub 2021 Aug 25.
8
Unveiling Extreme Photoreduction Potentials of Donor-Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides.
J Am Chem Soc. 2021 Aug 25;143(33):13266-13273. doi: 10.1021/jacs.1c05994. Epub 2021 Aug 16.
10
Quantum Dot Photocatalysts for Organic Transformations.
J Phys Chem Lett. 2021 Aug 5;12(30):7180-7193. doi: 10.1021/acs.jpclett.1c01717. Epub 2021 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验