Suppr超能文献

纤毛虫的进化生物能学。

Evolutionary bioenergetics of ciliates.

机构信息

Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA.

Ira A. Fulton Schools of Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA.

出版信息

J Eukaryot Microbiol. 2022 Sep;69(5):e12934. doi: 10.1111/jeu.12934. Epub 2022 Jul 28.

Abstract

Understanding why various organisms evolve alternative ways of living requires information on both the fitness advantages of phenotypic modifications and the costs of constructing and operating cellular features. Although the former has been the subject of a myriad of ecological studies, almost no attention has been given to how organisms allocate resources to alternative structures and functions. We address these matters by capitalizing on an array of observations on diverse ciliate species and from the emerging field of evolutionary bioenergetics. A relatively robust and general estimator for the total cost of a cell per cell cycle (in units of ATP equivalents) is provided, and this is then used to understand how the magnitudes of various investments scale with cell size. Among other things, we examine the costs associated with the large macronuclear genomes of ciliates, as well as ribosomes, various internal membranes, osmoregulation, cilia, and swimming activities. Although a number of uncertainties remain, the general approach taken may serve as blueprint for expanding this line of work to additional traits and phylogenetic lineages.

摘要

理解为什么各种生物会进化出不同的生活方式,需要了解表型改变的适应性优势和构建及运行细胞特征的成本。尽管前者是无数生态研究的主题,但几乎没有人关注生物体如何将资源分配给替代结构和功能。我们通过利用对各种纤毛虫物种的一系列观察结果和新兴的进化生物能量学领域来解决这些问题。我们提供了一个相对稳健且通用的细胞周期内每个细胞总成本(以 ATP 当量为单位)的估算值,然后使用该估算值来了解各种投资的幅度如何与细胞大小相关。除其他外,我们还研究了纤毛虫的大 Macronuclear 基因组、核糖体、各种内部膜、渗透调节、纤毛和游泳活动所带来的成本。尽管仍存在一些不确定性,但所采用的一般方法可以作为扩展这项工作的蓝图,以涵盖其他特征和系统发育谱系。

相似文献

1
Evolutionary bioenergetics of ciliates.
J Eukaryot Microbiol. 2022 Sep;69(5):e12934. doi: 10.1111/jeu.12934. Epub 2022 Jul 28.
4
Phenotypic plasticity through disposable genetic adaptation in ciliates.
Trends Microbiol. 2022 Feb;30(2):120-130. doi: 10.1016/j.tim.2021.06.007. Epub 2021 Jul 16.
5
Riding the ciliate cell cycle--a thirty-five-year prospective.
J Eukaryot Microbiol. 2001 Sep-Oct;48(5):505-18. doi: 10.1111/j.1550-7408.2001.tb00186.x.
7
Evolution of the Dynein Heavy Chain Family in Ciliates.
J Eukaryot Microbiol. 2016 Jan-Feb;63(1):138-41. doi: 10.1111/jeu.12245. Epub 2015 Jul 3.
9
Basal body assembly in ciliates: the power of numbers.
Traffic. 2009 May;10(5):461-71. doi: 10.1111/j.1600-0854.2009.00885.x. Epub 2009 Jan 24.

引用本文的文献

1
ATP requirements for growth reveal the bioenergetic impact of mitochondrial symbiosis.
Biochim Biophys Acta Bioenerg. 2025 Jun 23;1866(4):149564. doi: 10.1016/j.bbabio.2025.149564.
2
Flow physics of nutrient transport drives functional design of ciliates.
Nat Commun. 2025 May 4;16(1):4154. doi: 10.1038/s41467-025-59413-x.
3
Costs and benefits of phytoplankton motility.
ArXiv. 2025 Mar 18:arXiv:2503.14625v1.
4
Climbing the : The cost of growing animals great and small.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2422898121. doi: 10.1073/pnas.2422898121. Epub 2024 Dec 16.
5
The bioenergetic cost of building a metazoan.
Proc Natl Acad Sci U S A. 2024 Nov 12;121(46):e2414742121. doi: 10.1073/pnas.2414742121. Epub 2024 Nov 7.
6
Genetics, Genomics, and Evolution.
Annu Rev Genet. 2023 Nov 27;57:391-410. doi: 10.1146/annurev-genet-071819-104035.

本文引用的文献

1
Flagellar energy costs across the tree of life.
Elife. 2022 Jul 26;11:e77266. doi: 10.7554/eLife.77266.
2
A Path to the Atomic-Resolution Structures of Prokaryotic and Eukaryotic Ribosomes.
Biochemistry (Mosc). 2021 Aug;86(8):926-941. doi: 10.1134/S0006297921080046.
4
A Theoretical Framework for Evolutionary Cell Biology.
J Mol Biol. 2020 Mar 27;432(7):1861-1879. doi: 10.1016/j.jmb.2020.02.006. Epub 2020 Feb 19.
5
Identification of a DNA N6-Adenine Methyltransferase Complex and Its Impact on Chromatin Organization.
Cell. 2019 Jun 13;177(7):1781-1796.e25. doi: 10.1016/j.cell.2019.04.028. Epub 2019 May 16.
6
Limited Mutation-Rate Variation Within the Species Complex.
G3 (Bethesda). 2018 Jul 2;8(7):2523-2526. doi: 10.1534/g3.118.200420.
7
Membranes, energetics, and evolution across the prokaryote-eukaryote divide.
Elife. 2017 Mar 16;6:e20437. doi: 10.7554/eLife.20437.
8
The Macronuclear Genome of Stentor coeruleus Reveals Tiny Introns in a Giant Cell.
Curr Biol. 2017 Feb 20;27(4):569-575. doi: 10.1016/j.cub.2016.12.057. Epub 2017 Feb 9.
10
Swimming patterns of the quadriflagellate Tetraflagellochloris mauritanica (Chlamydomonadales, Chlorophyceae).
J Phycol. 2016 Apr;52(2):209-18. doi: 10.1111/jpy.12384. Epub 2016 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验