Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
Neurobiol Dis. 2022 Sep;171:105808. doi: 10.1016/j.nbd.2022.105808. Epub 2022 Jun 30.
Wallerian degeneration (WD) is a conserved axonal self-destruction program implicated in several neurological diseases. WD is driven by the degradation of the NAD synthesizing enzyme NMNAT2, the buildup of its substrate NMN, and the activation of the NAD degrading SARM1, eventually leading to axonal fragmentation. The regulation and amenability of these events to therapeutic interventions remain unclear. Here we explored pharmacological strategies that modulate NMN and NAD metabolism, namely the inhibition of the NMN-synthesizing enzyme NAMPT, activation of the nicotinic acid riboside (NaR) salvage pathway and inhibition of the NMNAT2-degrading DLK MAPK pathway in an axotomy model in vitro. Results show that NAMPT and DLK inhibition cause a significant but time-dependent delay of WD. These time-dependent effects are related to NMNAT2 degradation and changes in NMN and NAD levels. Supplementation of NAMPT inhibition with NaR has an enhanced effect that does not depend on timing of intervention and leads to robust protection up to 4 days. Additional DLK inhibition extends this even further to 6 days. Metabolite analyses reveal complex effects indicating that NAMPT and MAPK inhibition act by reducing NMN levels, ameliorating NAD loss and suppressing SARM1 activity. Finally, the axonal NAD/NMN ratio is highly predictive of cADPR levels, extending previous cell-free evidence on the allosteric regulation of SARM1. Our findings establish a window of axon protection extending several hours following injury. Moreover, we show prolonged protection by mixed treatments combining MAPK and NAMPT inhibition that proceed via complex effects on NAD metabolism and inhibition of SARM1.
Wallerian 变性(WD)是一种保守的轴突自毁程序,与几种神经退行性疾病有关。WD 由 NAD 合成酶 NMNAT2 的降解、其底物 NMN 的积累以及 NAD 降解酶 SARM1 的激活驱动,最终导致轴突碎片化。这些事件的调节和对治疗干预的易感性仍然不清楚。在这里,我们探索了调节 NMN 和 NAD 代谢的药理学策略,即抑制 NMN 合成酶 NAMPT、激活烟酰胺核糖核苷(NaR)回收途径和抑制 NMNAT2 降解的 DLK MAPK 途径,在体外轴突切断模型中。结果表明,NAMPT 和 DLK 抑制导致 WD 发生显著但具有时间依赖性的延迟。这些时间依赖性效应与 NMNAT2 降解以及 NMN 和 NAD 水平的变化有关。用 NaR 补充 NAMPT 抑制具有增强作用,不依赖于干预的时间,并导致高达 4 天的强大保护作用。额外的 DLK 抑制甚至将其延长至 6 天。代谢物分析显示出复杂的效应,表明 NAMPT 和 MAPK 抑制通过降低 NMN 水平、改善 NAD 损失和抑制 SARM1 活性起作用。最后,轴突 NAD/NMN 比高度预测 cADPR 水平,扩展了先前关于 SARM1 变构调节的无细胞证据。我们的发现确定了一个延长几个小时的轴突保护窗口。此外,我们通过混合治疗(同时抑制 MAPK 和 NAMPT)显示出延长的保护作用,该作用通过对 NAD 代谢的复杂影响和对 SARM1 的抑制来实现。