Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States.
Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States.
ACS Synth Biol. 2022 Jul 15;11(7):2284-2299. doi: 10.1021/acssynbio.1c00626. Epub 2022 Jul 6.
Protein expression with genetically encoded noncanonical amino acids (ncAAs) benefits a broad range of applications, from the discovery of biological therapeutics to fundamental biological studies. A major factor limiting the use of ncAAs is the lack of orthogonal translation systems (OTSs) that support efficient genetic code expansion at repurposed stop codons. Aminoacyl-tRNA synthetases (aaRSs) have been extensively evolved in but are not always orthogonal in eukaryotes. In this work, we use a yeast display-based ncAA incorporation reporter platform with fluorescence-activated cell sorting to screen libraries of aaRSs in high throughput for (1) the incorporation of ncAAs not previously encoded in yeast; (2) the improvement of the performance of an existing aaRS; (3) highly selective OTSs capable of discriminating between closely related ncAA analogues; and (4) OTSs exhibiting enhanced polyspecificity to support translation with structurally diverse sets of ncAAs. The number of previously undiscovered aaRS variants we report in this work more than doubles the total number of translationally active aaRSs available for genetic code manipulation in yeast. The success of myriad screening strategies has important implications related to the fundamental properties and evolvability of aaRSs. Furthermore, access to OTSs with diverse activities and specific or polyspecific properties is invaluable for a range of applications within chemical biology, synthetic biology, and protein engineering.
利用遗传编码的非天然氨基酸(ncAA)进行蛋白质表达,有益于广泛的应用,从生物治疗药物的发现到基础生物学研究。限制 ncAA 使用的一个主要因素是缺乏正交翻译系统(OTS),这些系统支持在重新利用的终止密码子处进行有效的遗传密码扩展。氨酰-tRNA 合成酶(aaRS)在原核生物中已经得到了广泛的进化,但在真核生物中并不总是正交的。在这项工作中,我们使用基于酵母展示的 ncAA 掺入报告平台和荧光激活细胞分选,以高通量筛选 aaRS 文库,用于:(1) 掺入以前在酵母中未编码的 ncAA;(2) 提高现有 aaRS 的性能;(3) 具有高选择性的 OTS,能够区分密切相关的 ncAA 类似物;以及 (4) OTS 具有增强的多特异性,能够支持结构多样化的 ncAA 翻译。在这项工作中,我们报告的以前未发现的 aaRS 变体数量超过了在酵母中进行遗传密码操作的可翻译 aaRS 的总数的两倍。众多筛选策略的成功对 aaRS 的基本特性和可进化性具有重要意义。此外,获得具有不同活性和特异性或多特异性的 OTS,对于化学生物学、合成生物学和蛋白质工程中的一系列应用是非常宝贵的。