Suppr超能文献

高通量氨酰-tRNA 合成酶工程在酵母中的遗传密码扩展。

High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast.

机构信息

Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States.

Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States.

出版信息

ACS Synth Biol. 2022 Jul 15;11(7):2284-2299. doi: 10.1021/acssynbio.1c00626. Epub 2022 Jul 6.

Abstract

Protein expression with genetically encoded noncanonical amino acids (ncAAs) benefits a broad range of applications, from the discovery of biological therapeutics to fundamental biological studies. A major factor limiting the use of ncAAs is the lack of orthogonal translation systems (OTSs) that support efficient genetic code expansion at repurposed stop codons. Aminoacyl-tRNA synthetases (aaRSs) have been extensively evolved in but are not always orthogonal in eukaryotes. In this work, we use a yeast display-based ncAA incorporation reporter platform with fluorescence-activated cell sorting to screen libraries of aaRSs in high throughput for (1) the incorporation of ncAAs not previously encoded in yeast; (2) the improvement of the performance of an existing aaRS; (3) highly selective OTSs capable of discriminating between closely related ncAA analogues; and (4) OTSs exhibiting enhanced polyspecificity to support translation with structurally diverse sets of ncAAs. The number of previously undiscovered aaRS variants we report in this work more than doubles the total number of translationally active aaRSs available for genetic code manipulation in yeast. The success of myriad screening strategies has important implications related to the fundamental properties and evolvability of aaRSs. Furthermore, access to OTSs with diverse activities and specific or polyspecific properties is invaluable for a range of applications within chemical biology, synthetic biology, and protein engineering.

摘要

利用遗传编码的非天然氨基酸(ncAA)进行蛋白质表达,有益于广泛的应用,从生物治疗药物的发现到基础生物学研究。限制 ncAA 使用的一个主要因素是缺乏正交翻译系统(OTS),这些系统支持在重新利用的终止密码子处进行有效的遗传密码扩展。氨酰-tRNA 合成酶(aaRS)在原核生物中已经得到了广泛的进化,但在真核生物中并不总是正交的。在这项工作中,我们使用基于酵母展示的 ncAA 掺入报告平台和荧光激活细胞分选,以高通量筛选 aaRS 文库,用于:(1) 掺入以前在酵母中未编码的 ncAA;(2) 提高现有 aaRS 的性能;(3) 具有高选择性的 OTS,能够区分密切相关的 ncAA 类似物;以及 (4) OTS 具有增强的多特异性,能够支持结构多样化的 ncAA 翻译。在这项工作中,我们报告的以前未发现的 aaRS 变体数量超过了在酵母中进行遗传密码操作的可翻译 aaRS 的总数的两倍。众多筛选策略的成功对 aaRS 的基本特性和可进化性具有重要意义。此外,获得具有不同活性和特异性或多特异性的 OTS,对于化学生物学、合成生物学和蛋白质工程中的一系列应用是非常宝贵的。

相似文献

1
High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast.
ACS Synth Biol. 2022 Jul 15;11(7):2284-2299. doi: 10.1021/acssynbio.1c00626. Epub 2022 Jul 6.
2
A Robust and Quantitative Reporter System To Evaluate Noncanonical Amino Acid Incorporation in Yeast.
ACS Synth Biol. 2018 Sep 21;7(9):2256-2269. doi: 10.1021/acssynbio.8b00260. Epub 2018 Sep 4.
3
Performance analysis of orthogonal pairs designed for an expanded eukaryotic genetic code.
PLoS One. 2012;7(4):e31992. doi: 10.1371/journal.pone.0031992. Epub 2012 Apr 6.
4
Genome-Wide Screen for Enhanced Noncanonical Amino Acid Incorporation in Yeast.
ACS Synth Biol. 2022 Nov 18;11(11):3669-3680. doi: 10.1021/acssynbio.2c00267. Epub 2022 Nov 8.
5
Exploration of Pyrrolysyl-tRNA Synthetase Activity in Yeast.
ACS Synth Biol. 2022 May 20;11(5):1824-1834. doi: 10.1021/acssynbio.2c00001. Epub 2022 Apr 13.
6
Broadening the Toolkit for Quantitatively Evaluating Noncanonical Amino Acid Incorporation in Yeast.
ACS Synth Biol. 2021 Nov 19;10(11):3094-3104. doi: 10.1021/acssynbio.1c00370. Epub 2021 Nov 3.
7
Engineering the Genetic Code in Cells and Animals: Biological Considerations and Impacts.
Acc Chem Res. 2017 Nov 21;50(11):2767-2775. doi: 10.1021/acs.accounts.7b00376. Epub 2017 Oct 6.
8
Two-Tier Screening Platform for Directed Evolution of Aminoacyl-tRNA Synthetases with Enhanced Stop Codon Suppression Efficiency.
Chembiochem. 2017 Jun 19;18(12):1109-1116. doi: 10.1002/cbic.201700039. Epub 2017 May 16.
10
Engineering Proteins Containing Noncanonical Amino Acids on the Yeast Surface.
Methods Mol Biol. 2022;2491:491-559. doi: 10.1007/978-1-0716-2285-8_23.

引用本文的文献

1
Directed evolution of aminoacyl-tRNA synthetases through in vivo hypermutation.
Nat Commun. 2025 May 24;16(1):4832. doi: 10.1038/s41467-025-60120-w.
2
Residue-Specific Incorporation of Noncanonical Amino Acids in Auxotrophic Hosts:
Chem Rev. 2025 May 28;125(10):4840-4932. doi: 10.1021/acs.chemrev.4c00280. Epub 2025 May 16.
3
Genetic Code Expansion: Recent Developments and Emerging Applications.
Chem Rev. 2025 Jan 22;125(2):523-598. doi: 10.1021/acs.chemrev.4c00216. Epub 2024 Dec 31.
4
Reaching New Heights in Genetic Code Manipulation with High Throughput Screening.
Chem Rev. 2024 Nov 13;124(21):12145-12175. doi: 10.1021/acs.chemrev.4c00329. Epub 2024 Oct 17.
5
Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming.
Chem Rev. 2024 Oct 9;124(19):11008-11062. doi: 10.1021/acs.chemrev.4c00243. Epub 2024 Sep 5.
6
Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids.
Chem Rev. 2024 Sep 25;124(18):10281-10362. doi: 10.1021/acs.chemrev.3c00878. Epub 2024 Aug 9.
7
Protein Engineering and High-Throughput Screening by Yeast Surface Display: Survey of Current Methods.
Small Sci. 2023 Dec;3(12). doi: 10.1002/smsc.202300095. Epub 2023 Nov 8.
8
Engineered Proteins and Materials Utilizing Residue-Specific Noncanonical Amino Acid Incorporation.
Chem Rev. 2024 Aug 14;124(15):9113-9135. doi: 10.1021/acs.chemrev.3c00855. Epub 2024 Jul 15.
9
A Translation-Independent Directed Evolution Strategy to Engineer Aminoacyl-tRNA Synthetases.
ACS Cent Sci. 2024 May 20;10(6):1211-1220. doi: 10.1021/acscentsci.3c01557. eCollection 2024 Jun 26.
10
Directed Evolution of a Bacterial Leucyl tRNA in Mammalian Cells for Enhanced Noncanonical Amino Acid Mutagenesis.
ACS Synth Biol. 2024 Jul 19;13(7):2141-2149. doi: 10.1021/acssynbio.4c00196. Epub 2024 Jun 21.

本文引用的文献

1
Engineering Proteins Containing Noncanonical Amino Acids on the Yeast Surface.
Methods Mol Biol. 2022;2491:491-559. doi: 10.1007/978-1-0716-2285-8_23.
2
Exploration of Pyrrolysyl-tRNA Synthetase Activity in Yeast.
ACS Synth Biol. 2022 May 20;11(5):1824-1834. doi: 10.1021/acssynbio.2c00001. Epub 2022 Apr 13.
3
Incorporating, Quantifying, and Leveraging Noncanonical Amino Acids in Yeast.
Methods Mol Biol. 2022;2394:377-432. doi: 10.1007/978-1-0716-1811-0_21.
4
Minimal genetically encoded tags for fluorescent protein labeling in living neurons.
Nat Commun. 2022 Jan 14;13(1):314. doi: 10.1038/s41467-022-27956-y.
5
Broadening the Toolkit for Quantitatively Evaluating Noncanonical Amino Acid Incorporation in Yeast.
ACS Synth Biol. 2021 Nov 19;10(11):3094-3104. doi: 10.1021/acssynbio.1c00370. Epub 2021 Nov 3.
6
Directed Evolution of an Improved Aminoacyl-tRNA Synthetase for Incorporation of L-3,4-Dihydroxyphenylalanine (L-DOPA).
Angew Chem Int Ed Engl. 2021 Jun 25;60(27):14811-14816. doi: 10.1002/anie.202100579. Epub 2021 May 24.
7
Directed evolution in mammalian cells.
Nat Methods. 2021 Apr;18(4):346-357. doi: 10.1038/s41592-021-01090-x. Epub 2021 Apr 7.
8
Reporter system architecture affects measurements of noncanonical amino acid incorporation efficiency and fidelity.
Mol Syst Des Eng. 2020 Feb 1;5(2):573-588. doi: 10.1039/c9me00107g. Epub 2020 Jan 23.
9
Structural Robustness Affects the Engineerability of Aminoacyl-tRNA Synthetases for Genetic Code Expansion.
Biochemistry. 2021 Feb 23;60(7):489-493. doi: 10.1021/acs.biochem.1c00056. Epub 2021 Feb 9.
10
Chemical Diversification of Simple Synthetic Antibodies.
ACS Chem Biol. 2021 Feb 19;16(2):344-359. doi: 10.1021/acschembio.0c00865. Epub 2021 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验