Suppr超能文献

合成的磷酸乙醇胺修饰的寡糖揭示了聚糖长度和取代基在生物膜启发组装中的重要性。

Synthetic phosphoethanolamine-modified oligosaccharides reveal the importance of glycan length and substitution in biofilm-inspired assemblies.

机构信息

Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.

Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany.

出版信息

Nat Commun. 2022 Jul 8;13(1):3954. doi: 10.1038/s41467-022-31633-5.

Abstract

Bacterial biofilm matrices are nanocomposites of proteins and polysaccharides with remarkable mechanical properties. Efforts understanding and tuning the protein component have been extensive, whereas the polysaccharide part remained mostly overlooked. The discovery of phosphoethanolamine (pEtN) modified cellulose in E. coli biofilms revealed that polysaccharide functionalization alters the biofilm properties. To date, the pattern of pEtN cellulose and its mode of interactions with proteins remains elusive. Herein, we report a model system based on synthetic epitomes to explore the role of pEtN in biofilm-inspired assemblies. Nine pEtN-modified oligosaccharides were synthesized with full control over the length, degree and pattern of pEtN substitution. The oligomers were co-assembled with a representative peptide, triggering the formation of fibers in a length dependent manner. We discovered that the pEtN pattern modulates the adhesion of biofilm-inspired matrices, while the peptide component controls its stiffness. Unnatural oligosaccharides tune or disrupt the assembly morphology, revealing interesting targets for polysaccharide engineering to develop tunable bio-inspired materials.

摘要

细菌生物膜基质是具有显著机械性能的蛋白质和多糖的纳米复合材料。人们一直在努力理解和调整蛋白质成分,而多糖部分则基本上被忽视了。在大肠杆菌生物膜中发现磷酸乙醇胺(pEtN)修饰的纤维素,揭示了多糖的功能化会改变生物膜的性质。迄今为止,pEtN 纤维素的模式及其与蛋白质相互作用的模式仍然难以捉摸。在此,我们报告了一个基于合成模型的系统,以探索 pEtN 在生物膜启发的组装中的作用。用全长、度和 pEtN 取代模式的控制,合成了 9 种 pEtN 修饰的寡糖。这些低聚物与代表性肽共同组装,以依赖于长度的方式触发纤维的形成。我们发现,pEtN 模式调节生物膜启发基质的粘附,而肽成分控制其硬度。非天然寡糖可以调节或破坏组装形态,为多糖工程开发可调谐的生物启发材料揭示了有趣的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8706/9270332/c9f07f47a515/41467_2022_31633_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验