Siri Macarena, Sarlet Adrien, Ziege Ricardo, Zorzetto Laura, Sotelo Guzman Carolina, Amini Shahrouz, Hengge Regine, Blank Kerstin G, Bidan Cécile M
Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany.
Humboldt University, 10115 Berlin, Germany.
ACS Biomater Sci Eng. 2025 Jul 14;11(7):4523-4536. doi: 10.1021/acsbiomaterials.5c00261. Epub 2025 Jun 12.
The mechanical properties of bacterial biofilms depend on the composition and microstructure of their extracellular matrix (ECM), which constitutes a network of extracellular proteins and polysaccharide fibers. In particular, macrocolony biofilms were suggested to present tissue-like elasticity due to a dense fiber network consisting of amyloid curli and phosphoethanolamine-modified cellulose (pEtN-cellulose). To understand the contribution of these two main ECM components to the emergent mechanical properties of biofilms, we performed shear-rheology and microindentation experiments on biofilms grown from strains that produce different ECM. We measured that biofilms containing curli fibers are stiffer in compression than curli-deficient biofilms. We further quantitatively demonstrate the crucial contribution of pEtN-cellulose, and especially of the pEtN modification, to the stiffness and structural stability of biofilms when associated with curli fibers. To compare the differences observed between the two methods, we also investigated how the structure and mechanical properties of biofilms with different ECM compositions are affected by the sample preparation method used for shear-rheology. We found that biofilm homogenization, used prior to shear-rheology, destroys the macroscale structure of the biofilm while the microscopic ECM architecture may remain intact. The resulting changes in biofilm mechanical properties highlight the respective advantages and limitations of the two complementary mechanical characterization techniques in the context of biofilm research. As such, our work does not only describe the role of the ECM on the mechanical properties of biofilms. It also informs the biofilm community on considering sample preparation when interpreting mechanical data of biofilm-based materials.
细菌生物膜的机械性能取决于其细胞外基质(ECM)的组成和微观结构,细胞外基质构成了一个由细胞外蛋白质和多糖纤维组成的网络。特别是,大菌落生物膜被认为具有类似组织的弹性,这是由于其由淀粉样卷曲蛋白和磷酸乙醇胺修饰的纤维素(pEtN-纤维素)组成的致密纤维网络。为了了解这两种主要的细胞外基质成分对生物膜新兴机械性能的贡献,我们对由产生不同细胞外基质的菌株生长的生物膜进行了剪切流变学和微压痕实验。我们测量到,含有卷曲蛋白纤维的生物膜在压缩时比缺乏卷曲蛋白的生物膜更硬。我们进一步定量证明了pEtN-纤维素,特别是pEtN修饰,在与卷曲蛋白纤维结合时对生物膜的硬度和结构稳定性的关键贡献。为了比较两种方法之间观察到的差异,我们还研究了不同细胞外基质组成的生物膜的结构和机械性能如何受到用于剪切流变学的样品制备方法的影响。我们发现,在剪切流变学之前使用的生物膜匀浆会破坏生物膜的宏观结构,而微观的细胞外基质结构可能保持完整。生物膜机械性能的这些变化突出了这两种互补的机械表征技术在生物膜研究背景下各自的优点和局限性。因此,我们的工作不仅描述了细胞外基质对生物膜机械性能的作用。它还告知生物膜研究群体在解释基于生物膜材料的机械数据时要考虑样品制备。