Suppr超能文献

具有石墨核心、树枝状大分子和碳氟化合物域以及聚乙二醇壳的分层复合纳米结构作为活性氧产生的氧储存库。

Hierarchical Composite Nanoarchitectonics with a Graphitic Core, Dendrimer and Fluorocarbon Domains, and a Poly(ethylene glycol) Shell as O Reservoirs for Reactive Oxygen Species Production.

作者信息

Workie Yitayal Admassu, Kuo Cheng-Yu, Riskawati Juwita Herlina, Krathumkhet Nattinee, Imae Toyoko, Ujihara Masaki, Krafft Marie Pierre

机构信息

Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.

Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.

出版信息

ACS Appl Mater Interfaces. 2022 Aug 3;14(30):35027-35039. doi: 10.1021/acsami.2c09812. Epub 2022 Jul 25.

Abstract

Graphene oxide (GO), single-walled carbon nanohorn (CNHox), and nitrogen-doped CNH (N-CNH) were functionalized with fluorinated poly(ethylene glycol) (-PEG) and/or with a fluorinated dendrimer (-DEN) to prepare a series of assembled nanocomposites (GO/-PEG, CNHox/-PEG, N-CNH/-PEG, N-CNH/-DEN, and N-CNH/-DEN/-PEG) that provide effective multisite O reservoirs. In all cases, the O uptake increased with time and saturated after 10-20 min. When graphitic carbons (GO and CNHox) were coated with -PEG, the O uptake doubled. The O loading was slightly higher in N-CNH compared to CNHox. Notably, coating N-CNH with -DEN or -PEG, or with both -DEN and -PEG, was more effective. The best performance was obtained with the N-CNH/-DEN/-PEG nanocomposite. The O uptake kinetics and mechanisms were analyzed in terms of the Langmuir adsorption equation based on a multibinding site assumption. This allowed the precise determination of multiple oxygen binding sites, including on the graphitic structure and in the dendrimer, -DEN, and -PEG. After an initial rapid, relatively limited release, the amount of O trapped in the nanomaterials remained high (>95%). This amount was marginally lower for the functionalized composites, but the oxygen stored was reserved for longer times. Finally, it is shown that these systems can generate singlet oxygen after irradiation by a light-emitting diode, and this production correlates with the amount of O loaded. Thus, it was anticipated that the present nanocomposites hierarchically assembled from components with different characters and complementary affinities for oxygen can be useful as O reservoirs for singlet oxygen generation to kill bacteria and viruses and to perform photodynamic therapy.

摘要

氧化石墨烯(GO)、单壁碳纳米角(CNHox)和氮掺杂碳纳米角(N-CNH)用氟化聚乙二醇(-PEG)和/或氟化树枝状聚合物(-DEN)进行功能化处理,以制备一系列组装纳米复合材料(GO/-PEG、CNHox/-PEG、N-CNH/-PEG、N-CNH/-DEN和N-CNH/-DEN/-PEG),这些复合材料可提供有效的多位点氧储存库。在所有情况下,氧气吸收量随时间增加,并在10 - 20分钟后达到饱和。当石墨碳(GO和CNHox)用-PEG包覆时,氧气吸收量翻倍。与CNHox相比,N-CNH中的氧负载量略高。值得注意的是,用-DEN或-PEG或同时用-DEN和-PEG包覆N-CNH更有效。N-CNH/-DEN/-PEG纳米复合材料表现出最佳性能。基于多结合位点假设,根据朗缪尔吸附方程分析了氧气吸收动力学和机制。这使得能够精确确定多个氧结合位点,包括在石墨结构以及树枝状聚合物-DEN和-PEG上的位点。在最初快速但相对有限的释放之后,被困在纳米材料中的氧气量仍然很高(>95%)。功能化复合材料中的这一量略低,但储存的氧气保留时间更长。最后,结果表明这些系统在发光二极管照射后可产生单线态氧,且这种产生与负载的氧量相关。因此,可以预期,由具有不同特性和对氧具有互补亲和力的组分分层组装而成的本纳米复合材料可作为产生单线态氧的氧储存库,用于杀死细菌和病毒以及进行光动力疗法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验