Suppr超能文献

预测放射性碘难治性分化型甲状腺癌的评分系统和简易列线图:一项回顾性研究

Scoring system and a simple nomogram for predicting radioiodine refractory differentiated thyroid cancer: a retrospective study.

作者信息

Liu Ye, Wang Yuhua, Zhang Wanchun

机构信息

Department of Nuclear Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.

Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.

出版信息

EJNMMI Res. 2022 Jul 29;12(1):45. doi: 10.1186/s13550-022-00917-8.

Abstract

BACKGROUND

Differentiated thyroid carcinoma (DTC) originates from abnormal follicular cells and accounts for approximately 90-95% of thyroid malignancies. The diagnosis of radioiodine refractory DTC (RR-DTC) is based on clinical evolution and iodine uptake characteristics rather than pathological characteristics. Thus, it takes a long time to become apparent, and the definition of RR-DTC covers multiple aspects. We aimed to analyze the clinical and molecular imaging characteristics of patients with RR-DTC and identify independent predictors to develop an RR-DTC scoring system and a simple nomogram for predicting the probability of RR-DTC. We reviewed the data of 404 patients with metastatic DTC who underwent both post-RAI WB therapy scintigraphy and F-fluorodeoxyglucose (F-FDG) positron emission tomography/computed tomography. Data on the clinical features and molecular characteristics of RR-DTC and non-RR-DTC cases were obtained from medical records. We screened for predictors using univariate analyses, obtained independent predictors through multivariate analyses, and then established a scoring system and a simple nomogram for predicting RR-DTC according to the corresponding odds ratio (OR) values.

RESULTS

Diagnosis at age ≥ 48 years (OR, 1.037; 95% confidence interval [CI], 1.007-1.069), recurrence between the operation and iodine-131 treatment (OR, 7.362; 95% CI 2.388-22.698), uptake of F-FDG (OR, 39.534; 95% CI 18.590-84.076), and the metastasis site (OR, 4.365; 95% CI 1.593-11.965) were highly independently associated with RR-DTC. We established a scoring system for predicting RR-DTC, showing that the area under the receiver operating characteristic curve (AUC) with a cutoff value of 10 points (AUC = 0.898) had a higher discernibility than any other single independent predictor. The risk factors of RR-DTC in nomogram modeling include diagnosis at age ≥ 48 years, recurrence between the operation and iodine-131 treatment, uptake of F-FDG, and the site of metastasis. The concordance index (c-Index) of the nomogram was 0.9.

CONCLUSIONS

We demonstrated that a predictive model based on four factors has a good ability to predict RR-DTC. An index score ≥ 10 points was found to be the optimal index point for predicting RR-DTC. Moreover, this nomogram model has good predictive ability and stability. This model may help establish an active surveillance or appropriate treatment strategy for RR-DTC cases.

摘要

背景

分化型甲状腺癌(DTC)起源于异常滤泡细胞,约占甲状腺恶性肿瘤的90 - 95%。放射性碘难治性DTC(RR - DTC)的诊断基于临床病程和碘摄取特征而非病理特征。因此,其表现出来需要很长时间,且RR - DTC的定义涵盖多个方面。我们旨在分析RR - DTC患者的临床和分子影像特征,并确定独立预测因素,以建立RR - DTC评分系统和一个简单的列线图来预测RR - DTC的发生概率。我们回顾了404例接受放射性碘治疗后全身显像(RAI WB)及氟 - 脱氧葡萄糖(F - FDG)正电子发射断层扫描/计算机断层扫描(PET/CT)的转移性DTC患者的数据。RR - DTC和非RR - DTC病例的临床特征和分子特征数据来自病历。我们通过单因素分析筛选预测因素,通过多因素分析获得独立预测因素,然后根据相应的比值比(OR)值建立预测RR - DTC的评分系统和简单列线图。

结果

年龄≥48岁时诊断(OR,1.037;95%置信区间[CI],1.007 - 1.069)、手术与碘 - 131治疗之间复发(OR,7.362;95% CI 2.388 - 22.698)、F - FDG摄取(OR,39.534;95% CI 18.590 - 84.076)以及转移部位(OR,4.365;95% CI 1.593 - 11.965)与RR - DTC高度独立相关。我们建立了一个预测RR - DTC的评分系统,结果显示,截断值为10分的受试者工作特征曲线下面积(AUC)(AUC = 0.898)比任何其他单一独立预测因素具有更高的辨别力。列线图模型中RR - DTC的危险因素包括年龄≥48岁时诊断、手术与碘 - 131治疗之间复发、F - FDG摄取以及转移部位。列线图的一致性指数(c - Index)为0.9。

结论

我们证明基于四个因素的预测模型具有良好的RR - DTC预测能力。发现指数评分≥10分是预测RR - DTC的最佳指数点。此外,该列线图模型具有良好的预测能力和稳定性。该模型可能有助于为RR - DTC病例制定积极监测或适当的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f87/9338217/d04f281cee79/13550_2022_917_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验