Suppr超能文献

用于SARS-CoV-2快速生物监测的电分析工具的创新与挑战

Innovations and Challenges in Electroanalytical Tools for Rapid Biosurveillance of SARS-CoV-2.

作者信息

Ardalan Sina, Ignaszak Anna

机构信息

Department of Chemistry University of New Brunswick 30 Dineen Drive, Fredericton Fredericton NB E3B 5A3 Canada.

出版信息

Adv Mater Technol. 2022 Jun 23:2200208. doi: 10.1002/admt.202200208.

Abstract

Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, preventive social paradigms and vaccine development have undergone serious renovations, which drastically reduced the viral spread and increased collective immunity. Although the technological advancements in diagnostic systems for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) detection are groundbreaking, the lack of sensitive, robust, and consumer-end point-of-care (POC) devices with smartphone connectivity are conspicuously felt. Despite its revolutionary impact on biotechnology and molecular diagnostics, the reverse transcription polymerase chain reaction technique as the gold standard in COVID-19 diagnosis is not suitable for rapid testing. Today's POC tests are dominated by the lateral flow assay technique, with inadequate sensitivity and lack of internet connectivity. Herein, the biosensing advancements in Internet of Things (IoT)-integrated electroanalytical tools as superior POC devices for SARS-CoV-2 detection will be demonstrated. Meanwhile, the impeding factors pivotal for the successful deployment of such novel bioanalytical devices, including the incongruous standards, redundant guidelines, and the limitations of IoT modules will be discussed.

摘要

自2019年冠状病毒病(COVID-19)大流行开始以来,预防性社会模式和疫苗开发经历了重大革新,这极大地减少了病毒传播并增强了群体免疫力。尽管用于检测严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的诊断系统取得了突破性的技术进步,但明显感到缺乏具有智能手机连接功能的灵敏、可靠且面向消费者的即时检测(POC)设备。尽管逆转录聚合酶链反应技术对生物技术和分子诊断产生了革命性影响,且是COVID-19诊断的金标准,但它并不适用于快速检测。如今的即时检测主要由侧向流动分析技术主导,其灵敏度不足且缺乏互联网连接功能。在此,将展示物联网(IoT)集成电分析工具作为用于SARS-CoV-2检测的卓越即时检测设备的生物传感进展。同时,还将讨论对于成功部署此类新型生物分析设备至关重要的阻碍因素,包括不一致的标准、冗余的指南以及物联网模块的局限性。

相似文献

1
Innovations and Challenges in Electroanalytical Tools for Rapid Biosurveillance of SARS-CoV-2.
Adv Mater Technol. 2022 Jun 23:2200208. doi: 10.1002/admt.202200208.
2
Current state of diagnostic, screening and surveillance testing methods for COVID-19 from an analytical chemistry point of view.
Microchem J. 2021 Aug;167:106305. doi: 10.1016/j.microc.2021.106305. Epub 2021 Apr 19.
4
Electrochemical SARS-CoV-2 Sensing at Point-of-Care and Artificial Intelligence for Intelligent COVID-19 Management.
ACS Appl Bio Mater. 2020 Nov 16;3(11):7306-7325. doi: 10.1021/acsabm.0c01004. Epub 2020 Oct 27.
5
Rapid Point-of-Care COVID-19 Diagnosis with a Gold-Nanoarchitecture-Assisted Laser-Scribed Graphene Biosensor.
Anal Chem. 2021 Jun 22;93(24):8585-8594. doi: 10.1021/acs.analchem.1c01444. Epub 2021 Jun 3.
7
PD-LAMP smartphone detection of SARS-CoV-2 on chip.
Anal Chim Acta. 2022 Apr 22;1203:339702. doi: 10.1016/j.aca.2022.339702. Epub 2022 Mar 9.
10
Emerging Biosensors to Detect Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): A Review.
Biosensors (Basel). 2021 Nov 2;11(11):434. doi: 10.3390/bios11110434.

引用本文的文献

1
Smartphone-based point-of-care testing of the SARS-CoV-2: A systematic review.
Sci Afr. 2023 Sep;21:e01757. doi: 10.1016/j.sciaf.2023.e01757. Epub 2023 Jun 10.
2
Aptamers 101: aptamer discovery and applications in biosensors and separations.
Chem Sci. 2023 May 2;14(19):4961-4978. doi: 10.1039/d3sc00439b. eCollection 2023 May 17.
3
Toward a Home Test for COVID-19 Diagnosis: DNA Machine for Amplification-Free SARS-CoV-2 Detection in Clinical Samples.
ChemMedChem. 2022 Oct 19;17(20):e202200382. doi: 10.1002/cmdc.202200382. Epub 2022 Sep 15.

本文引用的文献

1
Portable Sensing Devices for Detection of COVID-19: A Review.
IEEE Sens J. 2021 Feb 16;21(9):10219-10230. doi: 10.1109/JSEN.2021.3059970. eCollection 2021 May 1.
2
Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors.
Sensors (Basel). 2022 Feb 8;22(3):1282. doi: 10.3390/s22031282.
3
Electrochemical SARS-CoV-2 Sensing at Point-of-Care and Artificial Intelligence for Intelligent COVID-19 Management.
ACS Appl Bio Mater. 2020 Nov 16;3(11):7306-7325. doi: 10.1021/acsabm.0c01004. Epub 2020 Oct 27.
4
Recent Advances and a Roadmap to Aptamer-Based Sensors for Bloodstream Infections.
ACS Appl Bio Mater. 2021 May 17;4(5):3962-3984. doi: 10.1021/acsabm.0c01358. Epub 2021 Jan 15.
5
Recent Progress in Electrochemical Immunosensors.
Biosensors (Basel). 2021 Sep 29;11(10):360. doi: 10.3390/bios11100360.
6
Toward Smart Diagnostics in a Pandemic Scenario: COVID-19.
Front Bioeng Biotechnol. 2021 Jun 17;9:637203. doi: 10.3389/fbioe.2021.637203. eCollection 2021.
7
Two-Dimensional-Material-Based Field-Effect Transistor Biosensor for Detecting COVID-19 Virus (SARS-CoV-2).
ACS Nano. 2021 Jul 27;15(7):11461-11469. doi: 10.1021/acsnano.1c01188. Epub 2021 Jun 28.
8
The effect of COVID-19 and subsequent social distancing on travel behavior.
Transp Res Interdiscip Perspect. 2020 May;5:100121. doi: 10.1016/j.trip.2020.100121. Epub 2020 Apr 24.
9
A Review of RFID Sensors, the New Frontier of Internet of Things.
Sensors (Basel). 2021 Apr 30;21(9):3138. doi: 10.3390/s21093138.
10
Recent Advances of Field-Effect Transistor Technology for Infectious Diseases.
Biosensors (Basel). 2021 Apr 2;11(4):103. doi: 10.3390/bios11040103.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验