Suppr超能文献

发光二极管辅助、真菌色素介导的银纳米颗粒生物合成及其抗菌活性

Light-Emitting-Diode-Assisted, Fungal-Pigment-Mediated Biosynthesis of Silver Nanoparticles and Their Antibacterial Activity.

作者信息

Nuanaon Nobchulee, Bhatnagar Sharad, Motoike Tatsuya, Aoyagi Hideki

机构信息

Life Science and Bioengineering, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8572, Ibaraki, Japan.

Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba 305-8572, Ibaraki, Japan.

出版信息

Polymers (Basel). 2022 Aug 1;14(15):3140. doi: 10.3390/polym14153140.

Abstract

Nanoparticle synthesis, such as green synthesis of silver nanoparticles (AgNPs) using biogenic extracts, is affected by light, which changes the characteristics of particles. However, the effect of light-emitting diodes (LEDs) on AgNP biosynthesis using fungal pigment has not been examined. In this study, LEDs of different wavelengths were used in conjunction with extracellular pigment for AgNP biosynthesis. AgNPs were synthesized by mixing 10 mL of fungal pigment with AgNO, followed by 24 h exposure to LEDs of different wavelengths, such as blue, green, orange, red, and infrared. All treatments increased the yield of AgNPs. The solutions exposed to blue, green, and infrared LEDs exhibited a significant increase in AgNP synthesis. All AgNPs were then synthesized to determine the optimum precursor (AgNO) concentration and reaction rate. The results indicated 5 mM AgNO as the optimum precursor concentration; furthermore, AgNPs-blue LED had the highest reaction rate. Dynamic light scattering analysis, zeta potential measurement, transmission electron microscopy, and Fourier transform infrared spectroscopy were used to characterize the AgNPs. All LED-synthesized AgNPs exhibited an antimicrobial potential against and . The combination of LED-synthesized AgNPs and the antibiotic streptomycin demonstrated a synergistic antimicrobial activity against both bacterial species.

摘要

纳米颗粒的合成,例如使用生物提取物绿色合成银纳米颗粒(AgNP),会受到光的影响,光会改变颗粒的特性。然而,发光二极管(LED)对利用真菌色素进行AgNP生物合成的影响尚未得到研究。在本研究中,不同波长的LED与细胞外色素一起用于AgNP的生物合成。通过将10 mL真菌色素与AgNO混合来合成AgNP,然后将其暴露于不同波长的LED(如蓝色、绿色、橙色、红色和红外线)下24小时。所有处理都提高了AgNP的产量。暴露于蓝色、绿色和红外线LED的溶液中AgNP的合成显著增加。然后合成所有AgNP以确定最佳前驱体(AgNO)浓度和反应速率。结果表明5 mM AgNO为最佳前驱体浓度;此外,AgNPs-蓝色LED的反应速率最高。使用动态光散射分析、zeta电位测量、透射电子显微镜和傅里叶变换红外光谱对AgNP进行表征。所有通过LED合成的AgNP对[具体细菌名称1]和[具体细菌名称2]均表现出抗菌潜力。LED合成的AgNP与抗生素链霉素的组合对这两种细菌均表现出协同抗菌活性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验