Suppr超能文献

运动神经元存活蛋白 (SMN) 磷酸化图谱:与脊髓性肌萎缩症 (SMA) 的相关性。

The phospho-landscape of the survival of motoneuron protein (SMN) protein: relevance for spinal muscular atrophy (SMA).

机构信息

SMATHERIA gGmbH - Non-Profit Biomedical Research Institute, Hannover, Germany.

Center for Systems Neuroscience (ZSN), Hannover, Germany.

出版信息

Cell Mol Life Sci. 2022 Aug 25;79(9):497. doi: 10.1007/s00018-022-04522-9.

Abstract

Spinal muscular atrophy (SMA) is caused by low levels of the survival of motoneuron (SMN) Protein leading to preferential degeneration of lower motoneurons in the ventral horn of the spinal cord and brain stem. However, the SMN protein is ubiquitously expressed and there is growing evidence of a multisystem phenotype in SMA. Since a loss of SMN function is critical, it is important to decipher the regulatory mechanisms of SMN function starting on the level of the SMN protein itself. Posttranslational modifications (PTMs) of proteins regulate multiple functions and processes, including activity, cellular trafficking, and stability. Several PTM sites have been identified within the SMN sequence. Here, we map the identified SMN PTMs highlighting phosphorylation as a key regulator affecting localization, stability and functions of SMN. Furthermore, we propose SMN phosphorylation as a crucial factor for intracellular interaction and cellular distribution of SMN. We outline the relevance of phosphorylation of the spinal muscular atrophy (SMA) gene product SMN with regard to basic housekeeping functions of SMN impaired in this neurodegenerative disease. Finally, we compare SMA patient mutations with putative and verified phosphorylation sites. Thus, we emphasize the importance of phosphorylation as a cellular modulator in a clinical perspective as a potential additional target for combinatorial SMA treatment strategies.

摘要

脊髓性肌萎缩症(SMA)是由运动神经元存活(SMN)蛋白水平降低引起的,导致脊髓和脑干腹角中的较低运动神经元优先退化。然而,SMN 蛋白广泛表达,越来越多的证据表明 SMA 存在多系统表型。由于 SMN 功能的丧失是至关重要的,因此重要的是要从 SMN 蛋白本身的水平上破译 SMN 功能的调节机制。蛋白质的翻译后修饰(PTMs)调节多种功能和过程,包括活性、细胞运输和稳定性。在 SMN 序列中已经确定了几个 PTM 位点。在这里,我们绘制了已识别的 SMN PTMs 图谱,突出了磷酸化作为影响 SMN 定位、稳定性和功能的关键调节剂。此外,我们提出 SMN 磷酸化作为 SMN 细胞内相互作用和细胞分布的关键因素。我们概述了与脊髓性肌萎缩症(SMA)基因产物 SMN 磷酸化相关的重要性,因为该磷酸化在这种神经退行性疾病中损害了 SMN 的基本管家功能。最后,我们将 SMA 患者突变与推定和已验证的磷酸化位点进行比较。因此,我们从临床角度强调了磷酸化作为细胞调节剂的重要性,因为它可能是组合 SMA 治疗策略的另一个潜在靶点。

相似文献

2
HuD and the Survival Motor Neuron Protein Interact in Motoneurons and Are Essential for Motoneuron Development, Function, and mRNA Regulation.
J Neurosci. 2017 Nov 29;37(48):11559-11571. doi: 10.1523/JNEUROSCI.1528-17.2017. Epub 2017 Oct 23.
3
Calpain Inhibition Increases SMN Protein in Spinal Cord Motoneurons and Ameliorates the Spinal Muscular Atrophy Phenotype in Mice.
Mol Neurobiol. 2019 Jun;56(6):4414-4427. doi: 10.1007/s12035-018-1379-z. Epub 2018 Oct 16.
5
Hyperexcitability precedes motoneuron loss in the mouse model of spinal muscular atrophy.
J Neurophysiol. 2019 Oct 1;122(4):1297-1311. doi: 10.1152/jn.00652.2018. Epub 2019 Jul 31.
7
Motor defects in a Drosophila model for spinal muscular atrophy result from SMN depletion during early neurogenesis.
PLoS Genet. 2022 Jul 25;18(7):e1010325. doi: 10.1371/journal.pgen.1010325. eCollection 2022 Jul.
8
Regulation of Survival Motor Neuron Protein by the Nuclear Factor-Kappa B Pathway in Mouse Spinal Cord Motoneurons.
Mol Neurobiol. 2018 Jun;55(6):5019-5030. doi: 10.1007/s12035-017-0710-4. Epub 2017 Aug 14.
9
SMN deficiency alters Nrxn2 expression and splicing in zebrafish and mouse models of spinal muscular atrophy.
Hum Mol Genet. 2014 Apr 1;23(7):1754-70. doi: 10.1093/hmg/ddt567. Epub 2013 Nov 11.

引用本文的文献

1
Single Nucleotide Variants in a Cohort of Individuals With Spinal Muscular Atrophy.
Neurol Genet. 2025 Aug 27;11(5):e200286. doi: 10.1212/NXG.0000000000200286. eCollection 2025 Oct.
2
Epigenetic regulation in spinal muscular atrophy: emerging areas and future directions.
Orphanet J Rare Dis. 2025 Jul 10;20(1):353. doi: 10.1186/s13023-025-03857-3.
3
Patient-specific responses to splice-modifying treatments in spinal muscular atrophy fibroblasts.
Mol Ther Methods Clin Dev. 2024 Nov 13;32(4):101379. doi: 10.1016/j.omtm.2024.101379. eCollection 2024 Dec 12.
4
PPM1G and its diagnostic, prognostic and therapeutic potential in HCC (Review).
Int J Oncol. 2024 Nov;65(5). doi: 10.3892/ijo.2024.5697. Epub 2024 Sep 27.
6
SMN post-translational modifications in spinal muscular atrophy.
Front Cell Neurosci. 2023 Feb 17;17:1092488. doi: 10.3389/fncel.2023.1092488. eCollection 2023.
7
Phosphorylation of T897 in the dimerization domain of Gemin5 modulates protein interactions and translation regulation.
Comput Struct Biotechnol J. 2022 Nov 11;20:6182-6191. doi: 10.1016/j.csbj.2022.11.018. eCollection 2022.

本文引用的文献

1
Sumoylation regulates the assembly and activity of the SMN complex.
Nat Commun. 2021 Aug 19;12(1):5040. doi: 10.1038/s41467-021-25272-5.
2
TOR signaling regulates liquid phase separation of the SMN complex governing snRNP biogenesis.
Cell Rep. 2021 Jun 22;35(12):109277. doi: 10.1016/j.celrep.2021.109277.
3
Discovering the landscape of protein modifications.
Mol Cell. 2021 May 6;81(9):1868-1878. doi: 10.1016/j.molcel.2021.03.015. Epub 2021 Apr 1.
4
Spinal Muscular Atrophy: In the Challenge Lies a Solution.
Trends Neurosci. 2021 Apr;44(4):306-322. doi: 10.1016/j.tins.2020.11.009. Epub 2021 Jan 7.
6
SMN-primed ribosomes modulate the translation of transcripts related to spinal muscular atrophy.
Nat Cell Biol. 2020 Oct;22(10):1239-1251. doi: 10.1038/s41556-020-00577-7. Epub 2020 Sep 21.
8
Roles for receptor tyrosine kinases in tumor progression and implications for cancer treatment.
Adv Cancer Res. 2020;147:1-57. doi: 10.1016/bs.acr.2020.04.002. Epub 2020 Jun 15.
10
GPS 5.0: An Update on the Prediction of Kinase-specific Phosphorylation Sites in Proteins.
Genomics Proteomics Bioinformatics. 2020 Feb;18(1):72-80. doi: 10.1016/j.gpb.2020.01.001. Epub 2020 Mar 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验