Suppr超能文献

HuD与生存运动神经元蛋白在运动神经元中相互作用,对运动神经元的发育、功能及mRNA调节至关重要。

HuD and the Survival Motor Neuron Protein Interact in Motoneurons and Are Essential for Motoneuron Development, Function, and mRNA Regulation.

作者信息

Hao le Thi, Duy Phan Q, An Min, Talbot Jared, Iyer Chitra C, Wolman Marc, Beattie Christine E

机构信息

Wexner Medical Center Department of Neuroscience.

Department of Biochemistry and Pharmacology, and.

出版信息

J Neurosci. 2017 Nov 29;37(48):11559-11571. doi: 10.1523/JNEUROSCI.1528-17.2017. Epub 2017 Oct 23.

Abstract

Motoneurons establish a critical link between the CNS and muscles. If motoneurons do not develop correctly, they cannot form the required connections, resulting in movement defects or paralysis. Compromised development can also lead to degeneration because the motoneuron is not set up to function properly. Little is known, however, regarding the mechanisms that control vertebrate motoneuron development, particularly the later stages of axon branch and dendrite formation. The motoneuron disease spinal muscular atrophy (SMA) is caused by low levels of the survival motor neuron (SMN) protein leading to defects in vertebrate motoneuron development and synapse formation. Here we show using zebrafish as a model system that SMN interacts with the RNA binding protein (RBP) HuD in motoneurons during formation of axonal branches and dendrites. To determine the function of HuD in motoneurons, we generated zebrafish mutants and found that they exhibited decreased motor axon branches, dramatically fewer dendrites, and movement defects. These same phenotypes are present in animals expressing low levels of SMN, indicating that both proteins function in motoneuron development. HuD binds and transports mRNAs and one of its target mRNAs, , is involved in axonal outgrowth. We found that was decreased in both and mutants. Importantly, transgenic expression of HuD in motoneurons of mutants rescued the motoneuron defects, the movement defects, and mRNA levels. These data support that the interaction between SMN and HuD is critical for motoneuron development and point to a role for RBPs in SMA. In zebrafish models of the motoneuron disease spinal muscular atrophy (SMA), motor axons fail to form the normal extent of axonal branches and dendrites leading to decreased motor function. SMA is caused by low levels of the survival motor neuron (SMN) protein. We show in motoneurons that SMN interacts with the RNA binding protein, HuD. Novel mutants reveal that HuD is also necessary for motor axonal branch and dendrite formation. Data also revealed that both SMN and HuD affect levels of an mRNA involved in axonal growth. Moreover, expressing HuD in SMN-deficient motoneurons can rescue the motoneuron development and motor defects caused by low levels of SMN. These data support that SMN:HuD complexes are essential for normal motoneuron development and indicate that mRNA handling is a critical component of SMA.

摘要

运动神经元在中枢神经系统和肌肉之间建立了关键联系。如果运动神经元发育不正确,它们就无法形成所需的连接,从而导致运动缺陷或瘫痪。发育受损还可能导致退化,因为运动神经元没有建立起正常功能。然而,对于控制脊椎动物运动神经元发育的机制,尤其是轴突分支和树突形成的后期阶段,人们了解甚少。运动神经元疾病脊髓性肌萎缩症(SMA)是由存活运动神经元(SMN)蛋白水平低下导致脊椎动物运动神经元发育和突触形成缺陷引起的。在这里,我们以斑马鱼为模型系统表明,在轴突分支和树突形成过程中,SMN在运动神经元中与RNA结合蛋白(RBP)HuD相互作用。为了确定HuD在运动神经元中的功能,我们生成了斑马鱼突变体,发现它们表现出运动轴突分支减少、树突数量显著减少以及运动缺陷。这些相同的表型也出现在表达低水平SMN的动物中,表明这两种蛋白在运动神经元发育中发挥作用。HuD结合并转运mRNA,其靶mRNA之一参与轴突生长。我们发现该mRNA在突变体和突变体中均减少。重要的是,在突变体的运动神经元中过表达HuD挽救了运动神经元缺陷、运动缺陷以及mRNA水平。这些数据支持SMN和HuD之间的相互作用对运动神经元发育至关重要,并表明RBP在SMA中起作用。在运动神经元疾病脊髓性肌萎缩症(SMA)的斑马鱼模型中,运动轴突无法形成正常范围的松果体分支和树突,导致运动功能下降。SMA是由存活运动神经元(SMN)蛋白水平低下引起的。我们在运动神经元中表明SMN与RNA结合蛋白HuD相互作用。新的突变体表明HuD对运动轴突分支和树突形成也很必要。数据还显示,SMN和HuD都会影响参与轴突生长的mRNA水平。此外,在缺乏SMN的运动神经元中表达HuD可以挽救由低水平SMN引起的运动神经元发育和运动缺陷。这些数据支持SMN:HuD复合物对正常运动神经元发育至关重要,并表明mRNA处理是SMA的关键组成部分。

相似文献

1
HuD and the Survival Motor Neuron Protein Interact in Motoneurons and Are Essential for Motoneuron Development, Function, and mRNA Regulation.
J Neurosci. 2017 Nov 29;37(48):11559-11571. doi: 10.1523/JNEUROSCI.1528-17.2017. Epub 2017 Oct 23.
2
Temporal requirement for SMN in motoneuron development.
Hum Mol Genet. 2013 Jul 1;22(13):2612-25. doi: 10.1093/hmg/ddt110. Epub 2013 Mar 3.
3
Interaction of survival of motor neuron (SMN) and HuD proteins with mRNA cpg15 rescues motor neuron axonal deficits.
Proc Natl Acad Sci U S A. 2011 Jun 21;108(25):10337-42. doi: 10.1073/pnas.1104928108. Epub 2011 Jun 7.
6
HuD interacts with survival motor neuron protein and can rescue spinal muscular atrophy-like neuronal defects.
Hum Mol Genet. 2011 Feb 1;20(3):553-79. doi: 10.1093/hmg/ddq500. Epub 2010 Nov 18.
7
Zebrafish survival motor neuron mutants exhibit presynaptic neuromuscular junction defects.
Hum Mol Genet. 2009 Oct 1;18(19):3615-25. doi: 10.1093/hmg/ddp310. Epub 2009 Jul 10.
9
Compensatory axon sprouting for very slow axonal die-back in a transgenic model of spinal muscular atrophy type III.
J Physiol. 2017 Mar 1;595(5):1815-1829. doi: 10.1113/JP273404. Epub 2017 Jan 25.

引用本文的文献

1
Sm-site containing mRNAs can accept Sm-rings and are downregulated in Spinal Muscular Atrophy.
Nucleic Acids Res. 2025 Aug 11;53(15). doi: 10.1093/nar/gkaf794.
2
ELAV/Hu RNA-binding protein family: key regulators in neurological disorders, cancer, and other diseases.
RNA Biol. 2025 Dec;22(1):1-11. doi: 10.1080/15476286.2025.2471133. Epub 2025 Mar 20.
3
Isogenic patient-derived organoids reveal early neurodevelopmental defects in spinal muscular atrophy initiation.
Cell Rep Med. 2024 Aug 20;5(8):101659. doi: 10.1016/j.xcrm.2024.101659. Epub 2024 Jul 26.
4
Modeling Spinal Muscular Atrophy in Zebrafish: Current Advances and Future Perspectives.
Int J Mol Sci. 2024 Feb 6;25(4):1962. doi: 10.3390/ijms25041962.
5
Tudor-dimethylarginine interactions: the condensed version.
Trends Biochem Sci. 2023 Aug;48(8):689-698. doi: 10.1016/j.tibs.2023.04.003. Epub 2023 May 6.
6
The SMN Complex at the Crossroad between RNA Metabolism and Neurodegeneration.
Int J Mol Sci. 2023 Jan 23;24(3):2247. doi: 10.3390/ijms24032247.
7
SMN promotes mitochondrial metabolic maturation during myogenesis by regulating the MYOD-miRNA axis.
Life Sci Alliance. 2023 Jan 5;6(3). doi: 10.26508/lsa.202201457. Print 2023 Mar.
8
New Insights into the Identity of the DFNA58 Gene.
Genes (Basel). 2022 Dec 2;13(12):2274. doi: 10.3390/genes13122274.
9
Spinal muscular atrophy.
Nat Rev Dis Primers. 2022 Aug 4;8(1):52. doi: 10.1038/s41572-022-00380-8.
10
Roles of Embryonic Lethal Abnormal Vision-Like RNA Binding Proteins in Cancer and Beyond.
Front Cell Dev Biol. 2022 Apr 6;10:847761. doi: 10.3389/fcell.2022.847761. eCollection 2022.

本文引用的文献

1
RNA Docking and Local Translation Regulate Site-Specific Axon Remodeling In Vivo.
Neuron. 2017 Aug 16;95(4):852-868.e8. doi: 10.1016/j.neuron.2017.07.016. Epub 2017 Aug 3.
2
Non-nuclear Pool of Splicing Factor SFPQ Regulates Axonal Transcripts Required for Normal Motor Development.
Neuron. 2017 Apr 19;94(2):322-336.e5. doi: 10.1016/j.neuron.2017.03.026. Epub 2017 Apr 6.
4
The Survival of Motor Neuron Protein Acts as a Molecular Chaperone for mRNP Assembly.
Cell Rep. 2017 Feb 14;18(7):1660-1673. doi: 10.1016/j.celrep.2017.01.059.
5
IMP2 axonal localization, RNA interactome, and function in the development of axon trajectories.
Development. 2016 Aug 1;143(15):2753-9. doi: 10.1242/dev.128348. Epub 2016 Jul 6.
6
Dynamic Axonal Translation in Developing and Mature Visual Circuits.
Cell. 2016 Jun 30;166(1):181-92. doi: 10.1016/j.cell.2016.05.029. Epub 2016 Jun 16.
9
A streamlined CRISPR pipeline to reliably generate zebrafish frameshifting alleles.
Zebrafish. 2014 Dec;11(6):583-5. doi: 10.1089/zeb.2014.1047.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验