Suppr超能文献

都铎-二甲基精氨酸相互作用:简明版。

Tudor-dimethylarginine interactions: the condensed version.

机构信息

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.

出版信息

Trends Biochem Sci. 2023 Aug;48(8):689-698. doi: 10.1016/j.tibs.2023.04.003. Epub 2023 May 6.

Abstract

Biomolecular condensates (BMCs) can facilitate or inhibit diverse cellular functions. BMC formation is driven by noncovalent protein-protein, protein-RNA, and RNA-RNA interactions. Here, we focus on Tudor domain-containing proteins - such as survival motor neuron protein (SMN) - that contribute to BMC formation by binding to dimethylarginine (DMA) modifications on protein ligands. SMN is present in RNA-rich BMCs, and its absence causes spinal muscular atrophy (SMA). SMN's Tudor domain forms cytoplasmic and nuclear BMCs, but its DMA ligands are largely unknown, highlighting open questions about the function of SMN. Moreover, DMA modification can alter intramolecular interactions and affect protein localization. Despite these emerging functions, the lack of direct methods of DMA detection remains an obstacle to understanding Tudor-DMA interactions in cells.

摘要

生物分子凝聚物 (BMCs) 可以促进或抑制多种细胞功能。BMC 的形成是由非共价的蛋白质-蛋白质、蛋白质-RNA 和 RNA-RNA 相互作用驱动的。在这里,我们专注于含有 Tudor 结构域的蛋白质,如运动神经元生存蛋白 (SMN),它通过与蛋白质配体上的二甲基精氨酸 (DMA) 修饰结合,有助于 BMC 的形成。SMN 存在于富含 RNA 的 BMC 中,其缺失会导致脊髓性肌萎缩症 (SMA)。SMN 的 Tudor 结构域形成细胞质和核 BMC,但它的 DMA 配体在很大程度上是未知的,这凸显了关于 SMN 功能的开放性问题。此外,DMA 修饰可以改变分子内相互作用并影响蛋白质定位。尽管有这些新出现的功能,但缺乏直接检测 DMA 的方法仍然是理解细胞中 Tudor-DMA 相互作用的障碍。

相似文献

1
Tudor-dimethylarginine interactions: the condensed version.
Trends Biochem Sci. 2023 Aug;48(8):689-698. doi: 10.1016/j.tibs.2023.04.003. Epub 2023 May 6.
2
DMA-tudor interaction modules control the specificity of in vivo condensates.
Cell. 2021 Jul 8;184(14):3612-3625.e17. doi: 10.1016/j.cell.2021.05.008. Epub 2021 Jun 10.
3
Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins.
Nat Struct Mol Biol. 2011 Nov 20;18(12):1414-20. doi: 10.1038/nsmb.2185.
4
SMN tudor domain structure and its interaction with the Sm proteins.
Nat Struct Biol. 2001 Jan;8(1):27-31. doi: 10.1038/83014.
6
The Survival of Motor Neuron Protein Acts as a Molecular Chaperone for mRNP Assembly.
Cell Rep. 2017 Feb 14;18(7):1660-1673. doi: 10.1016/j.celrep.2017.01.059.
7
The Ewing's sarcoma protein interacts with the Tudor domain of the survival motor neuron protein.
Brain Res Mol Brain Res. 2003 Nov 6;119(1):37-49. doi: 10.1016/j.molbrainres.2003.08.011.
10
A small molecule antagonist of SMN disrupts the interaction between SMN and RNAP II.
Nat Commun. 2022 Sep 16;13(1):5453. doi: 10.1038/s41467-022-33229-5.

引用本文的文献

1
Multiple domains of scaffold Tudor protein play nonredundant roles in germline.
Life Sci Alliance. 2025 Jul 14;8(10). doi: 10.26508/lsa.202503304. Print 2025 Oct.
2
Multiple domains of scaffold Tudor protein play non-redundant roles in germline.
bioRxiv. 2025 Mar 17:2025.03.13.643173. doi: 10.1101/2025.03.13.643173.
3
Identification of coilin interactors reveals coordinated control of Cajal body number and structure.
J Cell Biol. 2025 Feb 3;224(2). doi: 10.1083/jcb.202305081. Epub 2024 Nov 27.
6
SART3 reads methylarginine-marked glycine- and arginine-rich motifs.
Cell Rep. 2024 Jul 23;43(7):114459. doi: 10.1016/j.celrep.2024.114459. Epub 2024 Jul 9.

本文引用的文献

1
A systematic survey of PRMT interactomes reveals the key roles of arginine methylation in the global control of RNA splicing and translation.
Sci Bull (Beijing). 2021 Jul 15;66(13):1342-1357. doi: 10.1016/j.scib.2021.01.004. Epub 2021 Jan 12.
2
A small molecule antagonist of SMN disrupts the interaction between SMN and RNAP II.
Nat Commun. 2022 Sep 16;13(1):5453. doi: 10.1038/s41467-022-33229-5.
3
A specific JMJD6 inhibitor potently suppresses multiple types of cancers both in vitro and in vivo.
Proc Natl Acad Sci U S A. 2022 Aug 23;119(34):e2200753119. doi: 10.1073/pnas.2200753119. Epub 2022 Aug 15.
4
Widespread hydroxylation of unstructured lysine-rich protein domains by JMJD6.
Proc Natl Acad Sci U S A. 2022 Aug 9;119(32):e2201483119. doi: 10.1073/pnas.2201483119. Epub 2022 Aug 5.
5
The Tudor Domain-Containing Protein, Kotsubu (CG9925), Localizes to the Nuage and Functions in piRNA Biogenesis in .
Front Mol Biosci. 2022 Mar 29;9:818302. doi: 10.3389/fmolb.2022.818302. eCollection 2022.
6
TDRD3 is an antiviral restriction factor that promotes IFN signaling with G3BP1.
PLoS Pathog. 2022 Jan 27;18(1):e1010249. doi: 10.1371/journal.ppat.1010249. eCollection 2022 Jan.
7
53BP1 regulates heterochromatin through liquid phase separation.
Nat Commun. 2022 Jan 18;13(1):360. doi: 10.1038/s41467-022-28019-y.
9
Cellular pathways influenced by protein arginine methylation: Implications for cancer.
Mol Cell. 2021 Nov 4;81(21):4357-4368. doi: 10.1016/j.molcel.2021.09.011. Epub 2021 Oct 6.
10
Independent transcriptomic and proteomic regulation by type I and II protein arginine methyltransferases.
iScience. 2021 Aug 11;24(9):102971. doi: 10.1016/j.isci.2021.102971. eCollection 2021 Sep 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验