Suppr超能文献

采用多组学策略、深度表型分析和预测性分析的精准医学。

Precision medicine with multi-omics strategies, deep phenotyping, and predictive analysis.

作者信息

Ahmed Zeeshan

机构信息

Institute for Health, Health Care Policy and Aging Research, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers Biomedical and Health Sciences, New Brunswick, NJ, United States.

出版信息

Prog Mol Biol Transl Sci. 2022;190(1):101-125. doi: 10.1016/bs.pmbts.2022.02.002. Epub 2022 Mar 7.

Abstract

Precision medicine is driven by the paradigm shift of empowering clinicians to predict the most appropriate course of action for patients with complex diseases and to improve routine medical and public health practice. Understanding patients' multi-omics make-up in conjunction with the clinical data will lead to determining predisposition, diagnostic, prognostic and predictive biomarkers and to optimal paths providing personalized care for diverse and targeted chronic, acute, and infectious diseases. Precision medicine promotes integrating collective and individualized clinical data with patient-specific multi-omics data to develop therapeutic strategies and knowledge bases for predictive and personalized medicine in diverse populations. Artificial intelligence approaches and machine learning algorithms will add additional capabilities to precision medicine that will leverage and extend the information contained within the original data and facilitate modeling patient-specific multi-omics data against publicly available annotation data for better understanding disease mechanisms. This chapter discusses emerging, significant, and recently reported multi-omics, deep phenotyping, and translational approaches to facilitate the implementation of precision medicine, as well as innovative, smart, and robust big-data platforms that are necessary to improve the quality and transition of healthcare by analyzing heterogeneous healthcare and multi-omics data.

摘要

精准医学的发展源于一种范式转变,即让临床医生有能力为患有复杂疾病的患者预测最合适的治疗方案,并改善常规医疗和公共卫生实践。结合临床数据了解患者的多组学构成,将有助于确定易感性、诊断、预后和预测性生物标志物,并为各种不同的慢性、急性和感染性疾病提供个性化护理的最佳途径。精准医学促进将集体和个体化临床数据与患者特定的多组学数据相结合,以开发针对不同人群的预测性和个性化医学的治疗策略和知识库。人工智能方法和机器学习算法将为精准医学增添更多功能,这些功能将利用并扩展原始数据中包含的信息,并便于针对公开可用的注释数据对患者特定的多组学数据进行建模,以更好地理解疾病机制。本章讨论了新兴的、重要的和最近报道的多组学、深度表型分析和转化方法,以促进精准医学的实施,以及创新的、智能的和强大的大数据平台,这些平台对于通过分析异构医疗保健和多组学数据来提高医疗保健质量和实现医疗转型是必不可少的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验