Bela Krisztina, Riyazuddin Riyazuddin, Csiszár Jolán
Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary.
Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62., H-6726 Szeged, Hungary.
Antioxidants (Basel). 2022 Aug 21;11(8):1624. doi: 10.3390/antiox11081624.
Glutathione peroxidases (GPXs) are non-heme peroxidases catalyzing the reduction of HO or organic hydroperoxides to water or corresponding alcohols using glutathione (GSH) or thioredoxin (TRX) as a reducing agent. In contrast to animal GPXs, the plant enzymes are non-seleno monomeric proteins that generally utilize TRX more effectively than GSH but can be a putative link between the two main redox systems. Because of the substantial differences compared to non-plant GPXs, use of the GPX-like (GPXL) name was suggested for enzymes. GPX(L)s not only can protect cells from stress-induced oxidative damages but are crucial components of plant development and growth. Due to fine-tuning the HO metabolism and redox homeostasis, they are involved in the whole life cycle even under normal growth conditions. Significantly new mechanisms were discovered related to their transcriptional, post-transcriptional and post-translational modifications by describing gene regulatory networks, interacting microRNA families, or identifying Lys decrotonylation in enzyme activation. Their involvement in epigenetic mechanisms was evidenced. Detailed genetic, evolutionary, and bio-chemical characterization, and comparison of the main functions of GPXs, demonstrated their species-specific roles. The multisided involvement of GPX(L)s in the regulation of the entire plant life ensure that their significance will be more widely recognized and applied in the future.
谷胱甘肽过氧化物酶(GPXs)是非血红素过氧化物酶,它们利用谷胱甘肽(GSH)或硫氧还蛋白(TRX)作为还原剂,催化过氧化氢(HO)或有机氢过氧化物还原为水或相应的醇。与动物GPXs不同,植物中的这些酶是无硒单体蛋白,通常比GSH更有效地利用TRX,但可能是两个主要氧化还原系统之间的一种假定联系。由于与非植物GPXs存在显著差异,有人建议将这些酶命名为类GPX(GPXL)。GPX(L)s不仅可以保护细胞免受应激诱导的氧化损伤,而且是植物发育和生长的关键组成部分。由于它们对HO代谢和氧化还原稳态的精细调节,即使在正常生长条件下,它们也参与植物的整个生命周期。通过描述基因调控网络、相互作用的微小RNA家族或鉴定酶激活过程中的赖氨酸巴豆酰化,发现了与它们的转录、转录后和翻译后修饰相关的重要新机制。已证实它们参与表观遗传机制。对GPXs的详细遗传、进化和生化特征以及主要功能的比较,证明了它们的物种特异性作用。GPX(L)s在整个植物生命调节中的多方面参与确保了它们的重要性在未来将得到更广泛的认可和应用。