University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL), 35392 Giessen, Germany.
Excellence Cluster Cardiopulmonary Institute (CPI), 35392 Giessen, Germany.
Am J Respir Crit Care Med. 2023 Feb 1;207(3):283-299. doi: 10.1164/rccm.202105-1284OC.
Although type II alveolar epithelial cells (AEC2s) are chronically injured in idiopathic pulmonary fibrosis (IPF), they contribute to epithelial regeneration in IPF. We hypothesized that Notch signaling may contribute to AEC2 proliferation, dedifferentiation characterized by loss of surfactant processing machinery, and lung fibrosis in IPF. We applied microarray analysis, kinome profiling, flow cytometry, immunofluorescence analysis, western blotting, quantitative PCR, and proliferation and surface activity analysis to study epithelial differentiation, proliferation, and matrix deposition (AEC2 lines, primary murine/human AEC2s), (human IPF-derived precision-cut lung slices), and (bleomycin and pepstatin application, Notch1 [Notch receptor 1] intracellular domain overexpression). We document here extensive SP-B and -C (surfactant protein-B and -C) processing defects in IPF AEC2s, due to loss of Napsin A, resulting in increased intra-alveolar surface tension and alveolar collapse and induction of endoplasmic reticulum stress in AEC2s. pharmacological inhibition of Napsin A results in the development of AEC2 injury and overt lung fibrosis. We also demonstrate that Notch1 signaling is already activated early in IPF and determines AEC2 fate by inhibiting differentiation (reduced lamellar body compartment, reduced capacity to process hydrophobic SP) and by causing increased epithelial proliferation and development of lung fibrosis, putatively via altered JAK (Janus kinase)/Stat (signal transducer and activator of transcription) signaling in AEC2s. Conversely, inhibition of Notch signaling in IPF-derived precision-cut lung slices improved the surfactant processing capacity of AEC2s and reversed fibrosis. Notch1 is a central regulator of AEC2 fate in IPF. It induces alveolar epithelial proliferation and loss of Napsin A and of surfactant proprotein processing, and it contributes to fibroproliferation.
虽然 II 型肺泡上皮细胞 (AEC2) 在特发性肺纤维化 (IPF) 中持续受损,但它们有助于 IPF 中的上皮再生。我们假设 Notch 信号通路可能有助于 AEC2 增殖、去分化,表现为表面活性剂处理机制丧失,以及 IPF 中的肺纤维化。我们应用微阵列分析、激酶组分析、流式细胞术、免疫荧光分析、Western blot、定量 PCR 以及增殖和表面活性分析来研究上皮分化、增殖和基质沉积(AEC2 系、原代鼠/人 AEC2)、(人 IPF 衍生的精密切割肺切片)和(博来霉素和胃蛋白酶应用、Notch1 [Notch 受体 1] 胞内结构域过表达)。我们在此记录了 IPF AEC2 中广泛存在的 SP-B 和 -C(表面活性剂蛋白-B 和 -C)处理缺陷,这是由于 Napsin A 的缺失导致肺泡内表面张力增加和肺泡塌陷,并在 AEC2 中诱导内质网应激。Napsin A 的药理学抑制导致 AEC2 损伤和明显的肺纤维化发展。我们还证明 Notch1 信号通路在 IPF 早期已经被激活,并通过抑制分化(减少板层小体隔室、减少疏水性 SP 的处理能力)和导致上皮增殖增加以及肺纤维化的发展来决定 AEC2 的命运,推测是通过改变 AEC2 中的 JAK(Janus kinase)/Stat(信号转导和转录激活因子)信号。相反,在 IPF 衍生的精密切割肺切片中抑制 Notch 信号通路可改善 AEC2 的表面活性剂处理能力并逆转纤维化。Notch1 是 IPF 中 AEC2 命运的中央调节因子。它诱导肺泡上皮细胞增殖和 Napsin A 以及表面活性剂前蛋白处理的丧失,并促进纤维增生。